scholarly journals Methodology of constructing driving cycles by the synthesis

2021 ◽  
Vol 264 ◽  
pp. 01033
Author(s):  
Akmal Mukhitdinov ◽  
Kamoliddin Ziyaev ◽  
Janserik Omarov ◽  
Shokhsanam Ismoilova

The difference in the dynamics of the development of motorization in the regions of the world, the levels of traffic organization, determines the need to develop a methodology for specific operating conditions. Improvement of the existing driving cycles and methods of their development, which characterize the real operating conditions, is of great importance. An important task is considered the implementation of targeted research to improve automobile operation efficiency of vehicles by introducing modern information technologies into the process of determining the driving cycles, modernizing the design parameters of vehicles by assessing the influence of driving conditions when rationing fuel consumption, developing methods for choosing the design parameters of vehicles and the most adapted vehicle for specific operating conditions. The article provides a systematic analysis of scientific research of methodology for constructing driving cycles, factors influencing the performance and driving modes, as well as the fuel consumption of the car. The methodology for constructing a standard driving cycle for specific urban operating conditions is given based by synthesizing on passenger car driving modes in the city.

2021 ◽  
pp. 172-181
Author(s):  
Oksana Y. Vasileva ◽  
Marina V. Nikulina Nikulina ◽  
Juri I. Platov Platov

The article deals with the problem of selecting efficient ships by the feasibility study in which brake power, main dimensions, payload, speed and fuel consumption are determined. The necessity of using the proposed selection at the initial stage of the ship's design is justified; the problems that arise at the present time are denoted. The purpose of the article is to propose a criterion for the selection of efficient vessels, "tied" to the operating conditions, based on the marginal cost of the ship. A method for its determination is presented. At the same time, annual revenues and operating costs should be determined by modern methods of business planning for the operation of the fleet. When searching for the parameters of the ship, the optimal fuel consumption is determined. The rest of the costs can be found according to the coefficients "tied" to the fuel consumption and calculated on the basis of existing prototypes. The results of calculations by the proposed method are shown; its merits and opportunities for improvement are noted with the availability of relevant information. The conclusion is made about the convenience and applicability of the proposed option for selecting efficient ship for the feasibility study based on optimization methods for determining the parameters of vessels under conditions of a high level of use of information technologies.


2018 ◽  
Vol 8 (12) ◽  
pp. 2390 ◽  
Author(s):  
Jaehyuk Lim ◽  
Yumin Lee ◽  
Kiho Kim ◽  
Jinwook Lee

The five-driving test mode is vehicle driving cycles made by the Environment Protection Association (EPA) in the United States of America (U.S.A.) to fully reflect actual driving environments. Recently, fuel consumption value calculated from the adjusted fuel consumption formula has been more effective in reducing the difference from that experienced in real-world driving conditions, than the official fuel efficiency equation used in the past that only considered the driving environment included in FTP and HWFET cycles. There are many factors that bring about divergence between official fuel consumption and that experienced by drivers, such as driving pattern behavior, accumulated mileage, driving environment, and traffic conditions. In this study, we focused on the factor of causing change of fuel efficiency value, calculated according to how many environmental conditions that appear on the real-road are considered, in producing the fuel consumption formula, and that of the vehicle’s accumulated mileage in a 2.0 L gasoline-fueled vehicle. So, the goals of this research are divided into four major areas to investigate divergence in fuel efficiency obtained from different equations, and what factors and how much CO2 and CO emissions that are closely correlated to fuel efficiency change, depending on the cumulative mileage of the vehicle. First, the fuel consumption value calculated from the non-adjusted formula, was compared with that calculated from the corrected fuel consumption formula. Also, how much CO2 concentration levels change as measured during each of the three driving cycles was analyzed as the vehicle ages. In addition, since the US06 driving cycle is divided into city mode and highway mode, how much CO2 and CO production levels change as the engine ages during acceleration periods in each mode was investigated. Finally, the empirical formula was constructed using fuel economy values obtained when the test vehicle reached 6500 km, 15,000 km, and 30,000 km cumulative mileage, to predict how much fuel consumption of city and highway would worsen, when mileage of the vehicle is increased further. When cumulative mileage values set in this study were reached, experiments were performed by placing the vehicle on a chassis dynamometer, in compliance with the carbon balance method. A key result of this study is that fuel economy is affected by various fuel consumption formula, as well as by aging of the engine. In particular, with aging aspects, the effect of an aging engine on fuel efficiency is insignificant, depending on the load and driving situation.


Author(s):  
Baodi Zhang ◽  
Xin Zhang ◽  
Lihe Xi ◽  
Chuanyang Sun

Driving cycles have been developed for various types of vehicle by different nations and in different areas, as they have a substantial effect on analysis of the fuel economy and the emissions. As the concern about the fuel consumption and the emissions of engineering machinery increases continuously, it has become necessary to develop corresponding operation cycles for engineering machinery. However, a typical operation cycle for bulldozers and the methods for its development is still lacking. Therefore, a representative operation cycle for bulldozers was developed in this study. By taking advantage of readily available data from the Controller Area Network (CAN), large amounts of cycle experimental data were acquired in a typical bulldozing process. Two parameters, namely the bulldozing resistance and the speed, were employed to represent the operation cycle. The values of these parameters were calculated on the basis of the dynamic model and the kinematic model combined with system identification methods. Experimental cycles were divided into operation segments according to the respective operating processes, and characteristic parameters for the operation segments were chosen and calculated accordingly. The optimal representative operation cycle was finally selected on the basis of the smallest Mahalanobis distance. The fuel consumption and the probability distributions of the representative operation cycle were also compared with the average fuel consumption and probability distributions of all the operation cycles and analysed. The average correlation coefficient of the probability distributions was 0.936, whereas the difference in the fuel consumptions was only 1.786%. This indicates that the developed cycle is indeed appropriate for representing the operating process of the bulldozer.


2021 ◽  
Vol 268 ◽  
pp. 01050
Author(s):  
Peilin Geng ◽  
Le Liu ◽  
Yuwei Wang ◽  
Xionghui Zou

This paper focuses on light duty of china 6 with the same emission control technology. three vehicles, with different engine displacements, were selected to study the emission and fuel consumption characteristics under three test cycles of NEDC, WLTC and CLTC. The results show that the emissions of CO, THC and NOx under WLTC cycle are minimum, compared with the NEDC and CLTC circulation. with the decrease of the engine displacement, the difference of CO and THC emissions increases among different cycles, which shows small displacement engine vehicles are greatly affected by driving cycles. Compared with other testing conditions, the PN emissions are relatively larger, but the difference of PN emissions is very small among the three test cycles.The fuel consumption of the WLTC test cycle is the smallest among the three cycles. As the engine displacement decreases, the fuel consumption difference decreases, indicating that the fuel consumption of large displacement engine vehicles is greatly affected by the cycle condition.


2005 ◽  
Vol 73 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Redhouane Henda ◽  
Daniel J. Falcioni

Heat transfer in a two-dimensional moving packed bed consisting of pellets surrounded by a gaseous atmosphere is numerically investigated. The governing equations are formulated based on the volume averaging method. A two-equation model, representing the solid and gas phases separately, and a one-equation model, representing both the solid and gas phases, are considered. The models take the form of partial differential equations with a set of boundary conditions, some of which were determined experimentally, and design parameters in addition to the operating conditions. We examine and discuss the parameters in order to reduce temperature differences from pellet to pellet. The calculation results show that by adopting a constant temperature along the preheater outer wall and decreasing the velocity of the pellets in the preheater, the difference in temperature from pellet to pellet is reduced from ∼120°C to ∼55°C, and the thermal efficiency of the preheater is tremendously improved.


Author(s):  
Alexander Kolin ◽  
S. E. Silantyev ◽  
Petr Rogov ◽  
M. E. Gnenik

The paper presents the results of using the simulation model estimating the fuel consumption of a light commercial vehicle in road traffic cycles; virtual tests are performed. The impact analysis of the motor vehicle design parameters on fuel consumption in NEDC and WLTC cycles is conducted. Numerical values of average fuel consumption are obtained for variation of the main parameters of the structure in NEDC and WLTC cycles. Energy distribution is shown during the motion of category N1 light commercial vehicle.


Author(s):  
Кривошапов ◽  
S. Krivoshapov

An analytical method for calculating fuel of transport vehicles. A feature of the technique is that the calculations attached to the load and speed mode of the machine. The efficiency of the machinery was assessed a single parameter - the vehicle efficiency factor. The methodology will take into account the design parameters of the vehicle, and a variety of operating conditions.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401770870 ◽  
Author(s):  
Jiancheng Weng ◽  
Quan Liang ◽  
Guoliang Qiao ◽  
Zhihong Chen ◽  
Jian Rong

Monitoring operating vehicles’ fuel consumption and emissions is necessity for evaluating fuel saving and emissions reduction. Taxis are one of the key objects needed energy consumption monitoring in passenger transport system. However, the traditional data collection methods for vehicle fuel consumption and emissions had high cost and inconvenient maintenance. This study aims at proposing an approach to estimate taxi fuel consumption and emissions based on the global position system (GPS) trajectory data. The bench test experiment was first conducted with three different driving cycles: cruising, acceleration and deceleration, and the composite driving cycle including these two. Then, models to calculate fuel consumption and emission based on the driving trajectory reconstruction were proposed. Therefore, the taxis’ fuel consumption and emissions could be got through GPS trajectory data corresponding to these three driving cycles. The model accuracy were verified that fuel consumption (92%) and CO2 emission (95%) fit the measurements much better than CO, NOx, and HC emission models (60%–70%). Furthermore, taking fuel consumption per 100 km as dependent variable, the relative errors between the model’s outputs and field measurements were 1.9% in urban areas and 11.2% in comprehensive operating conditions (i.e. both urban and suburb areas).


2021 ◽  
Vol 2130 (1) ◽  
pp. 012001
Author(s):  
L Grabowski

Abstract Simulation studies can be used to determine the fuel consumption and carbon dioxide emissions of city buses. The operating conditions of such vehicles are characterised by a very high variability of vehicle speed due to the large number of stops along the route of the bus. During vehicle testing, driving cycles are used to replicate the real-world conditions and to achieve repeatable test conditions. Such a driving cycle is a profile of speed represented as a function of time or as a function of distance. The speed profile over time can be an advantageous determinant, based on laboratory tests, for estimating fuel consumption and pollutant emissions of city buses. The research subject of this paper was the simulation of bus driving under simulated urban traffic conditions, carried out by means of the VECTO software. VECTO is a tool designed to perform the calculations of fuel consumption and carbon dioxide emissions of vehicles. It enables to model the powertrain of trucks and buses and to carry out simulations on various routes defined by driving cycles. The test object was a mega class bus, equipped with a 225 kW engine. The bus has three axles, including the rear drive axle. The scope of research included four cycles: urban, interurban, urbandelivery and interurban. Each of these was analysed in terms of speed and road gradient. The aim of this work was to perform a simulation study of the effect of the vehicle traffic conditions on the amount of CO2 emitted and fuel consumption. The obtained results were analysed.


Author(s):  
A. A. Kolin ◽  
◽  
S. E. Silantyev ◽  
P. S. Rogov ◽  
S. A. Sergievsky ◽  
...  

The article presents the results of using the developed simulation model aimed at estimating the fuel consumption of a light commercial vehicle in road traffic cycles. There have been conducted virtual tests. The analysis of the influence of the main parameters of the car on fuel consumption in the NEDC and WLTC cycles is performed. There have been established numerical values of the average fuel consumption indicator through variation in the main design parameters. The distribution of energy consumption during the motion of the car is shown.


Sign in / Sign up

Export Citation Format

Share Document