scholarly journals Mechanical properties and microstructure evolution of high-manganese (0.9 C – 13.95 Mn) steel during aging

2021 ◽  
Vol 297 ◽  
pp. 01044
Author(s):  
Omar Ben lenda ◽  
Sara Benmaziane ◽  
Ahmed Tara ◽  
Elmadani Saad

The influence of temperature on the structural and mechanical properties of the (0.9 C - 13.95 Mn) steel was investigated in this work. The high-manganese steel has underwent aging treatments at temperatures 700, 750, 800 and 850 °C for different times. The experimental techniques used are hardness test, scanning electron microscopy, optical microscopy and X-ray diffraction. The mechanical behavior and microstructural evolution of the high-manganese steel during aging are almost the same. The aging of the high-manganese steel was characterized by a rapid hardening while the overaging by a slow softening. In aging, the dispersion of fine M7C3 carbides in the austenite led to an increase in hardness. In overaging, the softening was caused by the coarsening of the M7C3 carbides.

2015 ◽  
Vol 628 ◽  
pp. 110-115 ◽  
Author(s):  
Helder Carvalho Ferreira ◽  
Francisco Jose Martins Boratto ◽  
Vicente Tadeu Lopes Buono

2011 ◽  
Vol 148-149 ◽  
pp. 1085-1088
Author(s):  
Gholam Reza Razavi

TWIP steels are high manganese steel (Mn: 17% - 35%) which are used for shaping car bodies. The structure of this kind of steels remains austenite even in room temperature. Due to low SFE (Stacking Fault Energy) twinning of grains is governing reformation mechanism in this kind of steels which strengthen TWIP steel. Regarding heat treatment influences on mechanical properties of TWIP steels, in this paper we discuss twinning phenomenon resulting from this kind of treatment. For this, following casting and hot rolling processes, we anneal the steel at 1100°C and different time cycles and study its microstructure using light microscope. The results showed that with decreasing grain size the number of twin annealing added And four types of annealing twin in the microstructure, in the end they all become one twin and then turn into grain.


2011 ◽  
Vol 418-420 ◽  
pp. 558-562
Author(s):  
Jun Yang ◽  
Mei Ling Chen ◽  
Li Yang ◽  
Huan Jin ◽  
Hong Gao

The effects of modified SiC nano-powders on the microstructures and the work-hardening properties of shot peening treatment on high manganese steel have been carried out by means of microstructure observation, x-ray diffraction analysis and hardness testing. The results are showed that compared with the samples without modified SiC nano-powders, the microstructure of ZGMn13 are finer and markedly improved rate of work hardening. The micro-hardness of surface is enhanced significantly after the shot peening. Its strengthening mechanism is mainly twinning and dislocation, but no Martensite strengthening.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1536
Author(s):  
Jaewoong Kim ◽  
Jisun Kim ◽  
Changmin Pyo

As the environmental regulations on ship emissions by the International Maritime Organization (IMO) become stricter, the demand for a ship powered by liquefied natural gas (LNG) is rapidly increasing worldwide. Compared to other materials, high-manganese steel has the advantages of superior impact toughness at cryogenic temperatures, a low thermal expansion coefficient, and a low-cost base material and welding rod. However, there is a limitation that the mechanical properties of a filler material are worse than those of a base material that has excellent mechanical properties. To solve these shortcomings, a basic study was performed to apply fiber laser welding with little welding deformation and no filler material to high-manganese steel. The relationship between laser welding parameters and penetration shapes was confirmed through cross-section observation and analysis by performing a bead on plate (BOP) test by changing laser power and welding speed, which are the main parameters of laser welding. In addition, the welding performance was evaluated through mechanical property tests (yield strength, tensile strength, hardness, cryogenic impact strength) of a welding part after performing the high-manganese steel laser butt welding experiment. As a result, it was confirmed that the yield strength of a high-manganese steel laser welding part was 97.5% of that of a base metal, and its tensile strength was 93.5% of that of a base metal.


2014 ◽  
Vol 783-786 ◽  
pp. 21-26
Author(s):  
Xiao Jun Liang ◽  
Ming Jian Hua ◽  
Anthony J. DeArdo

Thermomechanical controlled processing is a very important way to control the microstructure and mechanical properties in low carbon, high strength steel. This is especially true in the case of bainite formation, where the complexity of the austenite-bainite transformation makes the control of the processing important. In this study, a low carbon, high manganese steel containing niobium was investigated to better understand the roles of austenite conditioning and cooling rates on the bainitic phase transformation. Specimens were compared with and without deformation, and followed by seven different cooling rates ranging between 0.5°C/s and 40°C/s. The CCT curves showed that the transformation behaviors and temperatures are very different. The different bainitic microstructures which varied with austenite deformation and cooling rates will be discussed.


Sign in / Sign up

Export Citation Format

Share Document