scholarly journals Heavy metal contamination in surface water of Mohammedia wetland, Morocco

2021 ◽  
Vol 298 ◽  
pp. 05001
Author(s):  
Halima Jounaid ◽  
El Mehdi El Hachimi ◽  
Nihad Chakri ◽  
Toufik Remmal ◽  
Btissam Elamrani ◽  
...  

Assessing heavy metal concentrations in wetlands and identifying sources of metal contamination are critical steps in protecting wetlands. Using seven sampling stations, we evaluated the spatial variation of some heavy metal concentrations in surface waters of the Mohammedia wetland and a selected segment of the El Maleh wadi that feeds the wetland. Field observations made it possible to identify and map the pollution discharged into El Maleh wadi, carrying heavy metals into the wetland. The analyses showed that the concentrations of lead, manganese, and cadmium far exceed the thresholds relating to fish life in 100% of sampling stations. All the evidence points to heavy metals contamination of surface water in Mohammedia wetland, generated by industrial activities, wastewater discharges, and leachate from the old landfill located upstream.

2021 ◽  
Vol 47 (3) ◽  
Author(s):  
Ruth Ramos ◽  
Alejandra Verde ◽  
Elia M García

Venezuelan oil exploration and exploitation activities have been taking place since the 18th century. These long-term activities are closely related to heavy metal contamination because of the increasing input of toxic pollutants. Variations in heavy metal concentrations can cause, among other things, changes in metal distribution patterns, alterations in biogeochemical cycles, and increments in environmental and biological risks. The need for a complete baseline on heavy metal concentrations along the Venezuelan coast is critical. For this reason, we present the concentrations, distribution, and degree of contamination of 9 heavy metals (barium, mercury, copper, nickel, chromium, cadmium, zinc, lead, and vanadium) in marine sediments along the Venezuelan coast. We used the enrichment factor, the geoaccumulation index, and the mean effects range median quotients to evaluate the degree of contamination, comparing areas with and without intervention. Our results indicate that higher concentrations of these heavy metals are associated with places with greater anthropic activity, especially on the central and eastern coasts of Venezuela. Only cadmium showed extremely severe enrichment and a high degree of contamination. The biohazard potential was between 12% and 30% and was primarily associated with locations having high oil activity, which suggests that these places must be monitored, given the potential hazard they represent. This work encompasses the distribution and concentration of 9 heavy metals along the Venezuelan coast and takes relevance as a baseline for heavy metal concentrations and pollution indicators in marine sediments for Venezuela and the Caribbean.


2021 ◽  
Vol 24 (12) ◽  
pp. 2027-2034
Author(s):  
R.M. Tomno ◽  
L. Kitulu ◽  
J.K. Nzeve ◽  
F. Waswa ◽  
S.N. Mailu ◽  
...  

Heavy metal contamination of vegetables is a key aspect of food quality assurance since vegetables form a substantial proportion of the daily human diet. Health risks in urban populations due to exposure to heavy metals are on the increase because of the consumption of vegetables irrigated with wastewater. This study analyzed the concentration of Cd, Cu, Pb, Zn and Cr in spinach and kales grown using contaminated water of the Mitheu urban stream and those sold within Machakos municipality. Vegetable samples were collected once per month for a period of four months starting from June to September 2019. The mean heavy metal concentrations obtained were0.013 – 3.19 mg/kg, 0.468 – 1.706 mg/kg, 0.02 – 0.368 mg/kg, 5.78 – 26.7 mg/kg, and 0.104 – 14.0 mg/kg for Cd, Cu, Pb, Zn and Cr respectively in kale samples from the different sampling sites. The heavy metal mean concentrations in spinach were 0.055 – 0.575 mg/kg, 3.79 – 5.55 mg/kg, 0.098 – 1.49 mg/kg, 8.32 – 20.7 mg/kg and 0.368 – 4.43 mg/kg for Cd, Cu, Pb, Zn and Cr respectively. The mean concentrations of Cd, Pb, Zn and Cr in both spinach and kales in some of the sampling sites were above WHO permissible levels for heavy metals in vegetables for human consumption. However, the mean concentration of Cu was below WHO recommended levels. Consumption of these vegetables therefore poses a health risk to the consumers. There is need to create public awareness on the dangers of consuming contaminated vegetables. Additionally, measures to curb heavy metal pollution in Mitheu stream should be taken by the County Government of Machakos.


Baltica ◽  
2016 ◽  
Vol 29 (2) ◽  
pp. 107-120 ◽  
Author(s):  
Kęstutis Jokšas ◽  
Arūnas Galkus ◽  
Rimutė Stakėnienė

Samples of surface (0–3 cm) bottom sediments of the Lithuanian aquatic area of the Curonian Lagoon and Nemunas River delta were taken from 41 sites in 2013 and 2014. Sediment parameters, such as the percentage of particles, concentration of organic carbon and heavy metals (Cu, Zn, Ni, Pb, Cr, Cd, and Hg), were determined. The heavy metal contamination of the surface layer of bottom sediments was determined using the Nemerov’s pollution index applied to soil. The spatial distribution of contamination indices and the dependence of contamination dynamics on sedimentation factors were analysed. It was determined that heavy metal concentrations had a tendency to increase as sediment particles became finer and as Corg concentration increased. A greater amount of pollutants got into the aquatic area of the Curonian Lagoon that was closer to the Klaipėda harbour than into other lagoon zones. The heavy metals for the integral pollution index for the Curonian Lagoon and Nemunas River delta surface bottom sediments could be arranged in the following order: Cd>Pb>Cu>Ni>Hg>Cr>Zn.


2021 ◽  
Author(s):  
Saima Naz ◽  
Borhan Mansouri ◽  
Ahmad Manan Mustafa Chatha ◽  
Qudrat Ullah ◽  
Zain Ul Abadeen ◽  
...  

Abstract This study was conducted to calculate the burden of heavy metals i.e., aluminium (Al), arsenic (As), barium (Ba) and lead (Pb) in the river water of Punjnad Headworks, Bahawalpur, Pakistan. For this purpose, samples were collected from surface water, bed sediments and planktons during autumn, winter and spring seasons (September 2018 to May 2019). The results showed that in surface water Pb concentration was highest (453.87 mg L-1), while in sediments and plankton, Al concentration was highest (370.24 µg g-1 and 315.05 µg g-1, respectively). A significant difference (p < 0.000) in metal concentrations was found among surface water, bed sediments and plankton at different sampling stations during various seasons. However, findings of this study showed no adverse effects of heavy metal concentrations on human health. This study provided better understanding of various pollutants and their concentrations in water sources at the studied location.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 583 ◽  
Author(s):  
Minhaz Ahmed ◽  
Masaru Matsumoto ◽  
Akinori Ozaki ◽  
Nguyen Thinh ◽  
Kiyoshi Kurosawa

Heavy metal (Cr, Cu, Zn, As, Cd, and Pb) contamination in irrigation water, soil, and vegetables was investigated in farmland adjacent to a multi-industry zone in Bangladesh in dry and wet seasons. In the zone, many factories release wastewater into nearby irrigation canals, and vegetables cultivated with this water could be a major food chain route for human exposure. In the irrigation water and vegetables, heavy metal concentrations exceeded permissible levels in the two seasons, but this was not the case in soil. Zn had the highest concentration, and Cd had the lowest concentration in irrigation water, soil, and vegetables. All heavy metal concentrations were found to be lower in the wet than in the dry season, which is due to the dilution of water by rainfall, lower absorption of heavy metals from the diluted irrigation water, and heavy metal absorption from low concentrated irrigation water and/or soil. The cluster analysis data of irrigation water, soil, and vegetables revealed that the heavy metals in vegetables were considered to be absorbed from irrigation water in the wet season and from soil in the dry season. In the dry season, the high heavy metal concentrations in vegetables might be caused by a high bioconcentration factor (mostly > 20%).


2018 ◽  
Author(s):  
Xiaoyun Shen ◽  
Yongkuan Chi ◽  
Kangning Xiong

AbstractA diagnosis of heavy metal poisoning in sheep living on pasture in the vicinity of a zinc smelter was made based on laboratory tests and clinical signs in livestock in the Wumeng mountain area of China. Heavy metal contamination has generated serious harm to the health of local farmers after passing through the food chain. The levels of copper, zinc, cadmium, and lead in irrigation water, soil, forages, and animal tissues were measured in samples taken from within the vicinity of a zinc smelter and control samples. Heavy metal concentrations in foods (corn, rice, and wheat) and human tissues (blood and hair) from local farmers living in affected areas and controls were also determined. Hematological values were determined in human and animal samples. The copper, zinc, cadmium, and lead concentrations in irrigation water, soils, and forages were markedly higher than the levels in healthy pastures. Cadmium and lead concentrations were 177.82 and 16.61 times greater in forages than controls, respectively, and 68.71 and 15.66 times greater in soils than controls, respectively. Heavy metal concentrations in food (corn, rice, and wheat) in affected areas were markedly higher than in the control samples. Cadmium and lead concentrations in the tissues of affected sheep were markedly higher than in control animals (P< 0.01). Cadmium and lead concentrations in blood and hair samples from affected farmers were markedly higher than the control samples (P < 0.01). The occurrence of anemia in affected persons and animals followed a hypochromic and microcytic pattern. The intake of cadmium and lead was estimated according to herbage ingestion rates. It was found that the levels of cadmium and lead accumulated in sheep through the ingestion of vegetation growing in the sites closest to the zinc smelter were approximately 3.36 mg Cd/kg body wt./day and 38.47 mg Pb/kg body wt./day. This surpassed the fatal dosages for sheep of 1.13 mg Cd/kg body wt/day and 4.42 mg Pb/kg body wt./day. Serum total antioxidant capacity in affected humans and animals was significantly lower than in the controls (P < 0.01). The serum protein parameters in affected humans and animals were significantly reduced (P < 0.01). It was therefore concluded that heavy metal contamination has caused serious harm to sheep in this area. The heavy metal concentrations in food and grain also pose a significant risk to human health in the Chinese Wumeng mountain area.


2022 ◽  
Vol 3 ◽  
Author(s):  
Tim Jesper Suhrhoff

Enhanced weathering is a promising approach to remove carbon dioxide from the atmosphere. However, it may also pose environmental risks through the release of heavy metals, in particular nickel and chromium. In this perspective article I explore the potential role of plants in modulating these heavy metal fluxes. Agricultural basaltic soils may be valuable study sites in this context. However, the effect of biomass harvesting on the accumulation of heavy metals is currently not well studied. Mostly caused by different parent rock concentrations, there is a large variability of heavy metal concentrations in basaltic and ultramafic soils. Hence, to minimize environmental risks of enhanced weathering, basalts with low heavy metal concentrations should be favored. Existing phytoremediation strategies may be used to “phytoprevent” the accumulation of nickel and chromium released from enhanced weathering in soils. As a result, elevated nickel and chromium concentrations in rocks must not preclude enhanced weathering in all settings. In particular, hyperaccumulating plants could be used as part of a crop rotation to periodically remove heavy metals from soils. Enhanced weathering could also be employed on fields or forests of (non-hyper) accumulating plants that have a high primary production of biomass. Both approaches may have additional synergies with phytomining or bioenergy carbon capture and storage, increasing the total amount of carbon dioxide drawdown and at the same time preventing heavy metal accumulation in soils.


2021 ◽  
Author(s):  
Yanping Wang ◽  
Peng Qian ◽  
Dongming Li ◽  
Haifeng Chen ◽  
Xiangqian Zhou

Abstract Heavy metal contamination in ground dust presents potential environmental and human health threats. However, the heavy metal contamination status of ground dust in the vicinity of public point utilities remain poorly explored. Therefore, this study has been designed to analyze the heavy metal contaminations in the ground dust collected monthly near a public bronze sculpture in an urban campus of Nantong, China, using geo-accumulation indexes (Igeo), enrichment factors (EF), potential ecological risk indexes (RI), and health risks (non-carcinogenic risks-HI and carcinogenic risks-CR). This study revealed that the maximum Cr, Cu, Mn, Ni, Pb, and Zn concentrations in ground dust samples were 156.2, 708.8, 869.8, 140.8, 180.5, and 1089.7 mg kg-1 respectively in which the mean Cu and Zn concentrations were 9 and 7 times higher than the background level in soil. Temporally speaking, for the majority of heavy metals (with the exception of Ni), the high concentration seasons tend to mainly be the summer and autumn, as indicated by the higher Xlf and SIRM values during those seasons. It was observed that Cu and Zn exhibited significant enrichment (EF = 11.7 and 8.4, respectively), moderate to strong pollution (Igeo = 2.4 and 2.0, respectively), and moderate and low potential ecological risks (Eir = 45.6 and 6.6, respectively). The non-carcinogenic risks which adults exposed to the heavy metal concentrations suffered were found to be insignificant. However, the carcinogenic risks related to Ni (1.3E-04) had exceeded the acceptable level. Based on the obtained PCA and correlation analysis, the heavy metal concentrations in the ground dust of urban campuses could be related to public utilities, traffic-related exhaust sources, and industrial activities. This study’s findings demonstrated that urban public utilities require increased attention due to their significant enrichment, ecological risk factors, and the significant carcinogenic risks to the population.


2021 ◽  
Vol 84 (6) ◽  
pp. 1498-1508
Author(s):  
Nazanin Kalani ◽  
Borhan Riazi ◽  
Abdolreza Karbassi ◽  
Faramarz Moattar

Abstract This study aimed to measure and ecologically assess heavy metals, including As, Cr, Pb, Cd, and Ni in water and sediment samples taken from Gomishan, an international wetland located in Golestan, Iran. Four sampling stations were selected to cover all parts of the wetland. The analyses of the heavy metals were performed by ICP-MS. Based on the content of the heavy metals in the sediments, the values of risks for individual heavy metals, as Er, and for total heavy metals, as IR, were estimated. Igeo and EF also presented the soil quality in terms of accumulated contamination. The average content of the heavy metals in water was 23.12, 4.14, 10.04, 6.71, and 94.48 μg/L for As, Cd, Cr, Ni, and Pb, respectively. The heavy metal concentrations in sediments were decreased in the following order: Pb (2130 ppb) &gt; As (655 ppb) &gt; Cr (295 ppb) &gt; Ni (148.8 ppb) &gt; Cd (148.8 ppb). The potential risk values for individual heavy metals were in the low range, Er &lt; 40, except for Cd, which mostly posed a moderate ecological risk. The values of EF and Igeo showed that the sediments sampled from the Gomishan wetland were minimally enriched and contaminated. As the Gomishan wetland has a moderate risk of heavy metal contamination, conservative and monitoring activities should be performed.


Sign in / Sign up

Export Citation Format

Share Document