scholarly journals LiV3O8 Nanoplates Via Polyacrylamide-assisted Freeze Drying Method and as Cathode Materials for Li-ion Batteries

2021 ◽  
Vol 299 ◽  
pp. 03008
Author(s):  
Lin Li ◽  
Wei Zheng ◽  
Rongfei Zhao ◽  
Jinsong Cheng

The LiV3O8 nanoplates cathode materials was prepared by polyacrylamide-assisted freeze drying method. The annealing temperature affected the agrochemical properties of the LiV3O8 nanosheets cathode materials. The LiV3O8 nanoplates cathode materials were characterized by XRD, XPS, SEM, TEM, and galvanization charge/discharge profile measurement. The LiV3O8 fabricated at 550 °C (LVO550) showed the highest discharge capacity, best agrochemical performance, and high rate capability (after 100th, a reversible discharge capacity up to 223.8 mAh g−1). Benefiting from two dimensional nanoplates structure can provided a larger surface area, shorter lithium ion diffusion path, and maintain stable structure, the LiV3O8 nanoplates exhibited excellent rate capability, high reversible capacity and high temperature properties.

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 655 ◽  
Author(s):  
Hoang Kha Nguyen ◽  
Jaehan Bae ◽  
Jaehyun Hur ◽  
Sang Joon Park ◽  
Min Sang Park ◽  
...  

An easy and environmentally friendly method was developed for the preparation of a stabilized carbon nanotube–crystalline nanocellulose (CNT–CNC) dispersion and for its deposition to generate self-standing CNT–CNC composite films. The composite films were carbonized at different temperatures of 70 °C, 800 °C, and 1300 °C. Structural and morphological characteristics of the CNT–CNC films were investigated by X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM), which revealed that the sample annealed at 800 °C (CNT–CNC800) formed nano-tree networks of CNTs with a high surface area (1180 m2·g−1) and generated a conductive CNC matrix due to the effective carbonization. The carbonized composite films were applied as anodes for lithium-ion batteries, and the battery performance was evaluated in terms of initial voltage profile, cyclic voltammetry, capacity, cycling stability, and current rate efficiency. Among them, the CNT–CNC800 anode exhibited impressive electrochemical performance by showing a reversible capacity of 443 mAh·g−1 at a current density of 232 mA·g−1 after 120 cycles with the capacity retention of 89% and high rate capability.


2019 ◽  
Vol 953 ◽  
pp. 121-126
Author(s):  
Zhe Chen ◽  
Quan Fang Chen ◽  
Sha Ne Zhang ◽  
Guo Dong Xu ◽  
Mao You Lin ◽  
...  

High energy density and rechargeable lithium ion batteries are attracting widely interest in renewable energy fields. The preparation of the high performance materials for electrodes has been regarded as the most challenging and innovative aspect. By utilizing a facile combustion synthesis method, pure nanostructure LiNi0.5Mn1.5O4 cathode material for lithium ion batteries were successfully fabricated. The crystal phase of the samples were characterized by X-Ray Diffraction, and micro-morphology as well as electrochemistry properties were also evaluated using FE-SEM, electrochemical charge-discharge test. The result shows the fabricated LiNi0.5Mn1.5O4 cathode materials had outstanding crystallinity and near-spherical morphologies. That obtained LiNi0.5Mn1.5O4 samples delivered an initial discharge capacity of 137.2 mAhg-1 at the 0.1 C together with excellent cycling stability and rate capability as positive electrodes in a lithium cell. The superior electrochemical performance of the as-prepared samples are owing to nanostructure particles possessing the shorter diffusion path for Li+ transport, and the nanostructure lead to large contact area to effectively improve the charge/discharge properties and the rate property. It is demonstrated that the as-prepared nanostructure LiNi0.5Mn1.5O4 samples have potential as cathode materials of lithium-ion battery for future new energy vehicles.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 868 ◽  
Author(s):  
Huali Zhu ◽  
Rui Shen ◽  
Yiwei Tang ◽  
Xiaoyan Yan ◽  
Jun Liu ◽  
...  

Nickel-rich layered LiNi1−x−yCoxMnyO2 (LiMO2) is widely investigated as a promising cathode material for advanced lithium-ion batteries used in electric vehicles, and a much higher energy density in higher cut-off voltage is emergent for long driving range. However, during extensive cycling when charged to higher voltage, the battery exhibits severe capacity fading and obvious structural collapse, which leads to poor cycle stability. Herein, Sn-doping and in situ formed Li2SnO3 nano-coating layer co-modified spherical-like LiNi0.5Co0.2Mn0.3O2 samples were successfully prepared using a facile molten salt method and demonstrated excellent cyclic properties and high-rate capabilities. The transition metal site was expected to be substituted by Sn in this study. The original crystal structures of the layered materials were influenced by Sn-doping. Sn not only entered into the crystal lattice of LiNi0.5Co0.2Mn0.3O2, but also formed Li+-conductive Li2SnO3 on the surface. Sn-doping and Li2SnO3 coating layer co-modification are helpful to optimize the ratio of Ni2+ and Ni3+, and to improve the conductivity of the cathode. The reversible capacity and rate capability of the cathode are improved by Sn-modification. The 3 mol% Sn-modified LiNi0.5Co0.2Mn0.3O2 sample maintained the reversible capacity of 146.8 mAh g−1 at 5C, corresponding to 75.8% of its low-rate capacity (0.1C, 193.7mAh g−1) and kept the reversible capacity of 157.3 mAh g−1 with 88.4% capacity retention after 100 charge and discharge cycles at 1C rate between 2.7 and 4.6 V, showing the improved electrochemical property.


2018 ◽  
Vol 783 ◽  
pp. 137-143
Author(s):  
Yong Tao Zhang ◽  
Xiao Li Hu

The lithium-ion battery is widely and increasingly used in many portable electronic devices and high-power systems in the modern society. Currently, it is significant to develop excellent cathode materials to meet stringent standards for batteries. In this paper, recent developments were reviewed for several typical cathode materials with high voltages and good capacities. These cathode materials referred to LiCoO2, LiNiO2, LiMn2O4, LiMPO4 (M=Fe, Mn, Co and Ni, et al), and their composites. The technical bottlenecks about the cathode material is required to be conquered. For instance, LiCoO2 and LiNiO2 have high coulombic capacity and good cycling characteristics, but are costly and exhibit poor thermal stability. Simultaneously, LiMn2O4 exhibit good thermal stability, high voltage and high rate capability, but have low capacity. Thus it is advantageous to produce a composite which shares the benefits of both materials. The composite cathode material is superior over any single electrode material because the former has more balanced performance, and therefore, is promising to manufacture the next generation of batteries.


2019 ◽  
Vol 48 (28) ◽  
pp. 10422-10426 ◽  
Author(s):  
Xing Meng ◽  
Hai-Ning Wang ◽  
Yan-Hong Zou ◽  
Lu-Song Wang ◽  
Zi-Yan Zhou

POM-based metallogels are employed as anode materials for the first time, which exhibit high reversible capacity, high rate capability, and good cycling stability.


2020 ◽  
Vol 12 (9) ◽  
pp. 1429-1432
Author(s):  
Seunghwan Cha ◽  
Changhyeon Kim ◽  
Huihun Kim ◽  
Gyu-Bong Cho ◽  
Kwon-Koo Cho ◽  
...  

Recently, sodium ion batteries have attracted considerable interest for large-scale electric energy storage as an alternative to lithium ion batteries. However, the development of anode materials with long cycle life, high rate, and high reversible capacity is necessary for the advancement of sodium ion batteries. Bi anode is a promising candidate for sodium ion batteries due to its high theoretical capacity (385 mAh g–1 or 3800 mAh l–1) and high electrical conductivity (7.7 × 105 S m –1). Herein, we report the preparation of Bi anode using micro-sized commercial Bi particles. DME-based electrolyte was used, which is well known for its high ionic conductivity. The Bi anode showed excellent rate-capability up to 16 C-rate, and long cycle life stability with a high reversible capacity of 354 mAh g–1 at 16 C-rate for 50 cycles.


2019 ◽  
Vol 7 (36) ◽  
pp. 20958-20964 ◽  
Author(s):  
Yudong Zhang ◽  
Hang Li ◽  
Junxiang Liu ◽  
Jicheng Zhang ◽  
Fangyi Cheng ◽  
...  

Nickel-rich LiNi0.90Co0.07Mg0.03O2 cathode material with concentration gradient structure exhibits superior high capacity, high-rate capability and cycling stability.


2020 ◽  
Vol 44 (33) ◽  
pp. 14035-14040
Author(s):  
Rio Nugraha Putra ◽  
Martin Halim ◽  
Ghulam Ali ◽  
Shoyebmohamad F. Shaikh ◽  
Abdullah M. Al-Enizi ◽  
...  

Silicone oxycarbide (SiOC) is gaining attention as a potential anode material for lithium-ion batteries due to its higher reversible capacity and high-rate capability.


Sign in / Sign up

Export Citation Format

Share Document