scholarly journals Stirling Thermodynamics using Phasor Notation

2021 ◽  
Vol 313 ◽  
pp. 12003
Author(s):  
David M. Berchowitz

Phasor mathematics is used to develop the isothermal Stirling cycle and extended to the ideal adiabatic Stirling cycle. The results are developed for piston – piston (alpha) machines and displacer – piston (beta and gamma) machines. The effect of non-ideal regeneration is handled by defining a regenerator effectiveness ratio. The importance of the amplitude pressure ratio (pressure amplitude to the mean pressure) is developed and shown to be a useful parameter when evaluating the effect of dead volume or when applying simple cycle analyses. The analysis is developed for both power producing and cooling engines. The utility of these analyses is discussed with respect to calibrated results of real machines.

2021 ◽  
pp. 159101992110324
Author(s):  
Denise Brunozzi ◽  
Alfred See ◽  
Mark Rizko ◽  
Jason Choi ◽  
Gursant Atwal ◽  
...  

Background The impact of cerebral aneurysm size on distal intracranial hemodynamics such as arterial pressure and Pulsatility Index is not completely understood, either before or after flow diversion. Objective The aim of the study is to assess the impact of aneurysm size on distal Pulsatility Index and pressure before and after flow diversion. Methods From December 2015, prospective measurement of middle cerebral artery pressure and Pulsatility Index was performed in consecutive patients with unruptured cerebral aneurysms in the cavernous to communicating segments of the internal carotid artery, which were treated with single flow diversion. Pressure and Pulsatility Index were recorded at the M1-segment ipsilateral to the cerebral aneurysm. Ratio of middle cerebral artery to radial arterial pressure (pressure ratio) was calculated to control for variations in systemic blood pressure. Correlations between aneurysm size and pressure ratio and Pulsatility Index were assessed before and after treatment. Results A total of 28 aneurysms were treated. The mean aneurysm size was 7.2 mm. Aneurysm size correlated linearly with systolic pressure ratio (1% pressure ratio increase per mm aneurysm size increase, P = 0.002, r2 = 0.33), mean pressure ratio (0.6% per mm, P = 0.03, r2 = 0.17) and Pulsatility Index (5% Pulsatility Index increase per mm, P = 0.003, r2 = 0.43). After flow diversion, aneurysm size preserved a linear correlation with the systolic pressure ratio (1% per mm, P = 0.004, r2  =  0.28), but not with the mean pressure ratio (0.4% per mm, P = 0.15, r2 < 0.1) or Pulsatility Index (0.3% per mm, P = 0.78, r2 < 0.1). Conclusion Aneurysm size affects distal hemodynamics: patients with larger aneurysms have increased systolic and mean pressure ratio, and increased Pulsatility Index. After flow diversion, mean pressure ratio and Pulsatility Index no longer associate with the aneurysm size, suggesting an effect of the flow diversion also on distal intracranial hemodynamics.


2012 ◽  
Vol 16 (5) ◽  
pp. 1442-1445 ◽  
Author(s):  
Xiao-Ke Ku ◽  
Tian Li ◽  
Terese Lovas

An Eulerian-Lagrangian approach is developed within the OpenFOAM framework to investigate the effects of three well-known inter-phase drag force correlations on the fluidization behavior in a bubbling fluidized bed reactor. The results show a strong dependency on the restitution coefficient and the friction coefficient and no occurrence of bubbling and slugging for the ideal-collision case. The mean pressure drops predicted by the three models agree quite well with each other.


Author(s):  
T. M. Rudavsky

Chapter 9 is concerned with social and political behavior. Even in the context of moral philosophy, Jewish philosophers discuss issues within the wider context of a rational scientific perspective. This chapter begins with specific moral codes developed by Jewish thinkers, focusing in particular upon the works of Ibn Gabirol, Baḥya ibn Paquda, Maimonides, and Crescas. Can there be ethical dictates independent of the commandments? The rabbis already worried whether there existed a domain of “right behavior” that pre-dates, or exists independently of, divine commandment. Does Aristotle’s doctrine of the mean apply to divine law? Furthermore, can all humans achieve intellectual perfection? Is the road the same, and open, to all? And is there only one road to ultimate felicity, or are there many routes? The chapter ends with a discussion of whether human felicity can be achieved in this life, and whether the prophet best represents the ideal model for such achievement.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
K Piayda ◽  
A Wimmer ◽  
H Sievert ◽  
K Hellhammer ◽  
S Afzal ◽  
...  

Abstract Background In the era of transcatheter aortic valve replacement (TAVR), there is renewed interest in percutaneous balloon aortic valvuloplasty (BAV), which may qualify as the primary treatment option of choice in special clinical situations. Success of BAV is commonly defined as a significant mean pressure gradient reduction after the procedure. Purpose To evaluate the correlation of the mean pressure gradient reduction and increase in the aortic valve area (AVA) in different flow and gradient patterns of severe aortic stenosis (AS). Methods Consecutive patients from 01/2010 to 03/2018 undergoing BAV were divided into normal-flow high-gradient (NFHG), low-flow low-gradient (LFLG) and paradoxical low-flow low-gradient (pLFLG) AS. Baseline characteristics, hemodynamic and clinical information were collected and compared. Additionally, the clinical pathway of patients (BAV as a stand-alone procedure or BAV as a bridge to aortic valve replacement) was followed-up. Results One-hundred-fifty-six patients were grouped into NFHG (n=68, 43.5%), LFLG (n=68, 43.5%) and pLFLG (n=20, 12.8%) AS. Underlying reasons for BAV and not TAVR/SAVR as the primary treatment option are displayed in Figure 1. Spearman correlation revealed that the mean pressure gradient reduction had a moderate correlation with the increase in the AVA in patients with NFHG AS (r: 0.529, p&lt;0.001) but showed no association in patients with LFLG (r: 0.145, p=0.239) and pLFLG (r: 0.030, p=0.889) AS. Underlying reasons for patients to undergo BAV and not TAVR/SAVR varied between groups, however cardiogenic shock or refractory heart failure (overall 46.8%) were the most common ones. After the procedure, independent of the hemodynamic AS entity, patients showed a functional improvement, represented by substantially lower NYHA class levels (p&lt;0.001), lower NT-pro BNP levels (p=0.003) and a numerical but non-significant improvement in other echocardiographic parameters like the left ventricular ejection fraction (p=0.163) and tricuspid annular plane systolic excursion (TAPSE, p=0.066). An unplanned cardiac re-admission due to heart failure was necessary in 23.7% patients. Less than half of the patients (44.2%) received BAV as a bridge to TAVR/SAVR (median time to bridge 64 days). Survival was significantly increased in patients having BAV as a staged procedure (log-rank p&lt;0.001). Conclusion In daily clinical practice, the mean pressure gradient reduction might be an adequate surrogate of BAV success in patients with NFHG AS but is not suitable for patients with other hemodynamic entities of AS. In those patients, TTE should be directly performed in the catheter laboratory to correctly assess the increase of the AVA. BAV as a staged procedure in selected clinical scenarios increases survival and is a considerable option in all flow states of severe AS. (NCT04053192) Figure 1 Funding Acknowledgement Type of funding source: None


Author(s):  
Chiwon Ahn ◽  
Seungjae Lee ◽  
Jongshill Lee ◽  
Jaehoon Oh ◽  
Yeongtak Song ◽  
...  

This study aimed to assess the effectiveness of a novel chest compression (CC) smart-ring-based feedback system in a manikin simulation. In this randomized, crossover, controlled study, we evaluated the effect of smart-ring CC feedback on cardiopulmonary resuscitation (CPR). The learnability and usability of the tool were evaluated with the System Usability Scale (SUS). Participants were divided into two groups and each performed CCs with and without feedback 2 weeks apart, using different orders. The primary outcome was compression depth; the proportion of accurate-depth (5–6 cm) CCs, CC rate, and the proportion of complete CCs (≤1 cm of residual leaning) were assessed additionally. The feedback group and the non-feedback group showed significant differences in compression depth (52.1 (46.3–54.8) vs. 47.1 (40.5–49.9) mm, p = 0.021). The proportion of accurate-depth CCs was significantly higher in the interventional than in the control condition (88.7 (30.0–99.1) vs. 22.6 (0.0–58.5%), p = 0.033). The mean SUS score was 83.9 ± 8.7 points. The acceptability ranges were ‘acceptable’, and the adjective rating was ‘excellent’. CCs with smart-ring feedback could help achieve the ideal range of depth during CPR. The smart-ring may be a valuable source of CPR feedback.


Author(s):  
J. T. Schmitz ◽  
S. C. Morris ◽  
R. Ma ◽  
T. C. Corke ◽  
J. P. Clark ◽  
...  

The performance and detailed flow physics of a highly loaded, transonic, low-pressure turbine stage has been investigated numerically and experimentally. The mean rotor Zweifel coefficient was 1.35, with dh/U2 = 2.8, and a total pressure ratio of 1.75. The aerodynamic design was based on recent developments in boundary layer transition modeling. Steady and unsteady numerical solutions were used to design the blade geometry as well as to predict the design and off-design performance. Measurements were acquired in a recently developed, high-speed, rotating turbine facility. The nozzle-vane only and full stage characteristics were measured with varied mass flow, Reynolds number, and free-stream turbulence. The efficiency calculated from torque at the design speed and pressure ratio of the turbine was found to be 90.6%. This compared favorably to the mean line target value of 90.5%. This paper will describe the measurements and numerical solutions in detail for both design and off-design conditions.


Author(s):  
Dhirendra Godara ◽  
Vineet Choudhary ◽  
Nitish Soni

Background: Aims of this study was assess the ideal time of laparoscopic cholecystectomy after endoscopic retrograde cholangiopancreatography in cases of cholelithiasis with Choledocholthiasis Methods: The present study was carried out on 150 patients admitted in Department of General surgery National Institute of Medical Sciences and Research, Jaipur, diagnosed with cholelithiasis along with choledocholithiasis  from 1stJanuary 2019 to 30thJune, 2020. Results: In group 1 out of 75 patients 7 patients developed complications in post operative period compared to 35 patients out of 75 patients developed complications in group 2. The The mean hospital stay (in day) in group 1 patients was 2.26, median 2 and the mean of group 2 was 5.26, median 5. Conclusion: To conclude in our study there has been found significant advantage of early laparoscopic cholecystecomy following ERCP over the late group to minimize complications and promote early recovery of the patients. Keywords: ERCP, Cholecystectomy, Endoscopic retrograde cholangiopancreatography


Author(s):  
Marcus Lejon ◽  
Niklas Andersson ◽  
Lars Ellbrant ◽  
Hans Mårtensson

In this paper, the impact of manufacturing variations on performance of an axial compressor rotor are evaluated at design rotational speed. The geometric variations from the design intent were obtained from an optical coordinate measuring machine and used to evaluate the impact of manufacturing variations on performance and the flow field in the rotor. The complete blisk is simulated using 3D CFD calculations, allowing for a detailed analysis of the impact of geometric variations on the flow. It is shown that the mean shift of the geometry from the design intent is responsible for the majority of the change in performance in terms of mass flow and total pressure ratio for this specific blisk. In terms of polytropic efficiency, the measured geometric scatter is shown to have a higher influence than the geometric mean deviation. The geometric scatter around the mean is shown to impact the pressure distribution along the leading edge and the shock position. Furthermore, a blisk is analyzed with one blade deviating substantially from the design intent, denoted as blade 0. It is shown that the impact of blade 0 on the flow is largely limited to the blade passages that it is directly a part of. The results presented in this paper also show that the impact of this blade on the flow field can be represented by a simulation including 3 blade passages. In terms of loss, using 5 blade passages is shown to give a close estimate for the relative change in loss for blade 0 and neighboring blades.


1993 ◽  
Vol 75 (1) ◽  
pp. 148-154 ◽  
Author(s):  
S. Isono ◽  
D. L. Morrison ◽  
S. H. Launois ◽  
T. R. Feroah ◽  
W. A. Whitelaw ◽  
...  

The static mechanics of the hypotonic pharynx were endoscopically evaluated in nine sleeping patients with obstructive sleep apnea, having a primary narrowing only at the velopharynx. The velopharynx closed completely at a mean pressure of 0.18 +/- 1.21 cmH2O, and the mean half-dilation pressure was 1.93 cmH2O above closing pressure. The dependence of area on pressure was distinctly curvilinear, being steep near closing pressure and asymptotically approaching maximum area (mean = 1.32 cm2). The data for each patient were satisfactorily fitted by an exponential function (mean R2 = 0.98), and a single exponential relationship usefully represented the dependence of relative area on pressure above closing pressure for the population (R2 = 0.85). During the test inspiration, flow limitation was consistently observed when mask pressure exceeded closing pressure by 0.5–3.0 cmH2O. In summary, the static mechanics of the hypotonic velopharynx of patients with obstructive sleep apnea can be described by an exponential pressure-area relationship, with a closing pressure near atmospheric pressure and a high compliance in the range of airway pressure 0–3 cmH2O above closing pressure.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Subrata K. Ghosh ◽  
R. K. Sahoo ◽  
Sunil K. Sarangi

A study has been conducted to determine the off-design performance of cryogenic turboexpander. A theoretical model to predict the losses in the components of the turboexpander along the fluid flow path has been developed. The model uses a one-dimensional solution of flow conditions through the turbine along the mean streamline. In this analysis, the changes of fluid and flow properties between different components of turboexpander have been considered. Overall, turbine geometry, pressure ratio, and mass flow rate are input information. The output includes performance and velocity diagram parameters for any number of given speeds over a range of turbine pressure ratio. The procedure allows any arbitrary combination of fluid species, inlet conditions, and expansion ratio since the fluid properties are properly taken care of in the relevant equations. The computational process is illustrated with an example.


Sign in / Sign up

Export Citation Format

Share Document