scholarly journals Entropy generation of a hybrid nanofluid on MHD mixed convection is a lid-driven cavity with partial heating having two rounded corners

2021 ◽  
Vol 321 ◽  
pp. 02004
Author(s):  
Zakaria Korei ◽  
Smail Benissaad

This research aims to investigate thermal and flow behaviors and entropy generation of magnetohydrodynamic Al2O3-Cu/water hybrid nanofluid in a lid-driven cavity having two rounded corners. A solver based on C ++ object-oriented language was developed where the finite volume was used. Parameter’s analysis is provided by varying Reynolds numbers (Re), Hartmann numbers (Ha), the volume fraction of hybrid nanofluid (ϕ), radii of the rounded corners. The findings show that reducing the radii of the rounded corners minimizes the irreversibility. Furthermore, the thermal conductivity and dynamic viscosity of hybrid nanofluid contribute to increasing the irreversibility. Finally, the entropy generation is decreased by increasing the Hartman number and increases by rising the Reynolds number.

2018 ◽  
Vol 15 (5) ◽  
pp. 604-613
Author(s):  
Essma Belahmadi ◽  
Rachid Bessaih

Purpose The purpose of this study is to analyze heat transfer and entropy generation of a Cu-water nanofluid in a vertical channel. The channel walls are maintained at a hot temperature Tw. An up flow penetrates the channel at a uniform velocity v0 and a cold temperature T0 (T0 < Tw). The effects of Reynolds number Re, Grashof number Gr and solid volume fraction ϕ on streamlines, isotherms, entropy generation, friction factor, local and mean Nusselt numbers are evaluated. Design/methodology/approach The Cu-water nanofluid is used in this study. The software Ansys-fluent 14.5, based on the finite-volume method and SIMPLE algorithm, is used to simulate the mixed convection problem with entropy generation in a vertical channel. Findings The results show that the increase of Reynolds and Grashof numbers and solid volume fraction improves heat transfer and reduces entropy generation. Correlations for the mean Nusselt number and friction factor in terms of Reynolds number and solid volume fraction are obtained. The present results are compared with those found in the literature, which reveal a very good agreement. Originality/value The originality of this work is to understand the heat transfer and entropy generation for mixed convection of a Cu-water nanofluid in a vertical channel.


2020 ◽  
Vol 307 ◽  
pp. 01007
Author(s):  
Mahdi Benzema ◽  
Youb Khaled Benkahla ◽  
Ahlem Boudiaf ◽  
Seif-Eddine Ouyahia ◽  
Mohammed El Ganaoui

This paper reports a numerical study of mixed convection heat transfer with entropy generation in a vented complex shape cavity filled with MWCNT−MgO (15:85 vol %) /water hybrid nanofluid. A hot source is placed at the mid potion of the inclined plate of the enclosure, while the rest of the rigid walls are adiabatic. A thermo-dependent correlations proposed by [12] for the dynamic viscosity and the thermal conductivity, especially developed for the considered fluid, are used. After validation of the model, the analysis has been done for a Reynolds numbers ranging from 10 to 600 and total nanoparticles volume fraction ranging from 0.0 to 0.02 using the finite volume method. The predicted results of streamlines, isotherms, isentropic lines, average Nusselt number, average entropy generation and average Bejan number are the main focus of interest in the present paper.


2015 ◽  
Vol 19 (5) ◽  
pp. 1575-1590 ◽  
Author(s):  
Nader Pourmahmoud ◽  
Ashkan Ghafouri ◽  
Iraj Mirzaee

Numerical investigation of the laminar mixed convection in two-dimensional lid driven cavity filled with water-Al2O3, water-Cu or water-TiO2 nanofluids is done in this work. In the present study, the top and bottom horizontal walls are thermally insulated while the vertical walls are kept at constant but different temperatures. The governing equations are given in term of the stream function-vorticity formulation in the non-dimensionalized form and then solved numerically by second-order central difference scheme. The thermal conductivity and effective viscosity of nanofluid have been calculated by Maxwell-Garnett and Brinkman models, respectively. An excellent agreement between the current work and previously published data on the basis of special cases are found. The governing parameters are Rayleigh number 103 ? Ra ? 106 and solid concentration 0 ? ? ?0.2 at constant Reynolds and Prandtl numbers. An increase in mean Nusselt number is found as the volume fraction of nanoparticles increases for the whole range of Rayleigh numbers. In addition, it is found that significant heat transfer enhancement can be obtained by increasing thermal conductivity coefficient of additive particles. At Ra=1.75?105, the Nusselt number increases by about 21% for TiO2-Water, and almost 25% for Al2O3-Water, and finally around 40% for Cu-Water nanofluid. Therefore, the highest values are obtained when using Cu nanoparticles. The result obtained using variable thermal conductivity and variable viscosity models are also compared to the results acquired by the Maxwell-Garnett and the Brinkman model.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Naveen Janjanam ◽  
Rajesh Nimmagadda ◽  
Lazarus Godson Asirvatham ◽  
R. Harish ◽  
Somchai Wongwises

AbstractTwo-dimensional conjugate heat transfer performance of stepped lid-driven cavity was numerically investigated in the present study under forced and mixed convection in laminar regime. Pure water and Aluminium oxide (Al2O3)/water nanofluid with three different nanoparticle volume concentrations were considered. All the numerical simulations were performed in ANSYS FLUENT using homogeneous heat transfer model for Reynolds number, Re = 100 to 500 and Grashof number, Gr = 5000, 13,000 and 20,000. Effective thermal conductivity of the Al2O3/water nanofluid was evaluated by considering the Brownian motion of nanoparticles which results in 20.56% higher value for 3 vol.% Al2O3/water nanofluid in comparison with the lowest thermal conductivity value obtained in the present study. A solid region made up of silicon is present underneath the fluid region of the cavity in three geometrical configurations (forward step, backward step and no step) which results in conjugate heat transfer. For higher Re values (Re = 500), no much difference in the average Nusselt number (Nuavg) is observed between forced and mixed convection. Whereas, for Re = 100 and Gr = 20,000, Nuavg value of mixed convection is 24% higher than that of forced convection. Out of all the three configurations, at Re = 100, forward step with mixed convection results in higher heat transfer performance as the obtained interface temperature is lower than all other cases. Moreover, at Re = 500, 3 vol.% Al2O3/water nanofluid enhances the heat transfer performance by 23.63% in comparison with pure water for mixed convection with Gr = 20,000 in forward step.


Author(s):  
Lioua Kolsi ◽  
Hakan F. Öztop ◽  
Nidal Abu-Hamdeh ◽  
Borjini Mohamad Naceur ◽  
Habib Ben Assia

Purpose The main purpose of this work is to arrive at a three-dimensional (3D) numerical solution on mixed convection in a cubic cavity with a longitudinally located triangular fin in different sides. Design/methodology/approach The 3D governing equations are solved via finite volume technique by writing a code in FORTRAN platform. The governing parameters are chosen as Richardson number, 0.01 ≤ Ri ≤ 10 and thermal conductivity ratio 0.01 ≤ Rc ≤ 100 for fixed parameters of Pr = 0.7 and Re = 100. Two cases are considered for a lid-driven wall from left to right (V+) and right to left (V−). Findings It is observed that entropy generation due to heat transfer becomes dominant onto entropy generation because of fluid friction. The most important parameter is the direction of the moving lid, and lower values are obtained when the lid moves from right to left. Originality The main originality of this work is to arrive at a solution of a 3D problem of mixed convection and entropy generation for lid-driven cavity with conductive triangular fin attachments.


2018 ◽  
Vol 916 ◽  
pp. 221-225
Author(s):  
Ji Zu Lv ◽  
Liang Yu Li ◽  
Cheng Zhi Hu ◽  
Min Li Bai ◽  
Sheng Nan Chang ◽  
...  

Nanofluids is an innovative study of nanotechnology applied to the traditional field of thermal engineering. It refers to the metal or non-metallic nanopowder was dispersed into water, alcohol, oil and other traditional heat transfer medium, to prepared as a new heat transfer medium with high thermal conductivity. The role of nanofluids in strengthening heat transfer has been confirmed by a large number of experimental studies. Its heat transfer mechanism is mainly divided into two aspects. On the one hand, the addition of nanoparticles enhances the thermal conductivity. On the other hand, due to the interaction between the nanoparticles and base fluid causing the changes in the flow characteristics, which is also the main factor affecting the heat transfer of nanofluids. Therefore, a intensive study on the flow characteristics of nanofluids will make the study of heat transfer more meaningful. In this experiment, the flow characteristics of SiO2-water nanofluids in two-dimensional backward step flow are quantitatively studied by PIV. The results show that under the same Reynolds number, the turbulence of nanofluids is larger than that of pure water. With the increase of nanofluids volume fraction, the flow characteristics are constantly changing. The quantitative analysis proved that the nanofluids disturbance was enhanced compared with the base liquid, which resulting in the heat transfer enhancement.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Oktay Çiçek ◽  
A. Cihat Baytaş

Purpose The purpose of this study is to numerically investigate heat transfer and entropy generation between airframe and cabin-cargo departments in an aircraft. The conjugate forced convection and entropy generation in a cylindrical cavity within air channel partly filled with porous insulation material as simplified geometry for airframe and cabin-cargo departments are considered under local thermal non-equilibrium condition. Design/methodology/approach The non-dimensional governing equations for fluid and porous media discretized by finite volume method are solved using the SIMPLE algorithm with pressure and velocity correction. Findings The effects of the following parameters on the problem are investigated; Reynolds number, Darcy number, the size of inlet and exit cross-section, thermal conductivity ratio for solid and fluid phases, angle between the vertical symmetry axis and the end of channel wall exit and the gap between adiabatic channel wall and horizontal adiabatic wall separating cabin and cargo sections. Originality/value This paper can provide a basic perspective and framework for thermal design between the fuselage and cabin-cargo sections. The minimum total entropy generation number is calculated for various Reynolds numbers and thermal conductivity ratios. It is observed that the channel wall temperature increases for high Reynolds number, low Darcy number, narrower exit cross-section and wider the gap between channel wall and horizontal.


Author(s):  
Muhammad Qasim ◽  
Muhammad Idrees Afridi

Analysis of entropy generation in mixed convection flow over a vertically stretching sheet has been carried out in the presence of variable thermal conductivity and energy dissipation. Governing equations are reduced to self-similar ordinary differential equations via similarity transformations and are solved numerically by applying shooting and fourth-order Runge–Kutta techniques. The expressions for entropy generation number and Bejan number are also obtained by using similarity transformations. The influence of embedding physical parameters on quantities of interest is discussed through graphical illustrations. The results reveal that entropy generation number increases significantly in the vicinity of stretching surface and gradually dies out as one move away from the sheet. Also, the entropy generation number decreases with an increase in temperature difference parameter. Moreover, entropy generation number enhances with an enhancement in the Eckert number, Prandtl number, and variable thermal conductivity parameter.


Sign in / Sign up

Export Citation Format

Share Document