scholarly journals Conductance of disordered semiconducting nanowires and carbon nanotubes: a chain of quantum dots

2009 ◽  
Vol 48 (1) ◽  
pp. 10604 ◽  
Author(s):  
J.-F. Dayen ◽  
T. L. Wade ◽  
G. Rizza ◽  
D. S. Golubev ◽  
C.-S. Cojocaru ◽  
...  
Author(s):  
Prashant Malik ◽  
Neha Gulati ◽  
Raj Kaur Malik ◽  
Upendra Nagaich

Nanotechnology deal with the particle size in nanometers. Nanotechnology is ranging from extensions of conventional device physics to completely new approaches based upon molecular self assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale. In nanotechnology mainly three types of nanodevices are described: carbon nanotubes, quantum dots and dendrimers. It is a recent technique used as small size particles to treat many diseases like cancer, gene therapy and used as diagnostics. Nanotechnology used to formulate targeted, controlled and sustained drug delivery systems. Pharmaceutical nanotechnology embraces applications of nanoscience to pharmacy as nanomaterials and as devices like drug delivery, diagnostic, imaging and biosensor materials. Pharmaceutical nanotechnology has provided more fine tuned diagnosis and focused treatment of disease at a molecular level.    


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 794
Author(s):  
Cullen Horstmann ◽  
Victoria Davenport ◽  
Min Zhang ◽  
Alyse Peters ◽  
Kyoungtae Kim

Next-generation sequencing (NGS) technology has revolutionized sequence-based research. In recent years, high-throughput sequencing has become the method of choice in studying the toxicity of chemical agents through observing and measuring changes in transcript levels. Engineered nanomaterial (ENM)-toxicity has become a major field of research and has adopted microarray and newer RNA-Seq methods. Recently, nanotechnology has become a promising tool in the diagnosis and treatment of several diseases in humans. However, due to their high stability, they are likely capable of remaining in the body and environment for long periods of time. Their mechanisms of toxicity and long-lasting effects on our health is still poorly understood. This review explores the effects of three ENMs including carbon nanotubes (CNTs), quantum dots (QDs), and Ag nanoparticles (AgNPs) by cross examining publications on transcriptomic changes induced by these nanomaterials.


Author(s):  
Yucheng Ou ◽  
Gangqiang Zhu ◽  
Fei Rao ◽  
Jianzhi Gao ◽  
Jun Chang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Anirban Das ◽  
Eric Hall ◽  
Chien M. Wai

Attachment of PbS quantum dots (QD) to single-walled carbon nanotubes (SWNT) and multiwalled carbon nanotubes (MWCNT) is described; wherein commercially obtained PbS-QD of size 2.7 nm, stabilized by oleic acid, are added to a suspension of single- or multiwalled carbon nanotubes (CNT) prefunctionalized noncovalently with 1,2-benzenedimethanethiol (1,2-BDMT) in ethanol. The aromatic part of 1,2-BDMT attaches to the CNT byπ-πstacking interactions, noncovalently functionalizing the CNT. The thiol part of the 1,2-BDMT on the functionalized CNT replaces oleic acid on the surface of the QD facilitating the noncovalent attachment of the QD to the CNT. The composites were characterized by TEM and FTIR spectroscopy. Quenching of NIR fluorescence of the PbS-QD on attachment to the carbon nanotubes (CNT) was observed, indicating FRET from the QD to the CNT.


Sign in / Sign up

Export Citation Format

Share Document