Application of artificial neuronal networks in extracting parameters of solar cells

2020 ◽  
Vol 91 (2) ◽  
pp. 20903
Author(s):  
Mohammed Khalis ◽  
Rachid Masrour

This paper presents a new neural network-based approach that aims to use the back propagation multilayer perceptual (MLP) propagation algorithm to improve the extraction of parameters from a solar cell based on the single-diode model from the experimentally measured characteristic I(V). The I(V) current function as a model function for the neural network, is used the Lambert function W and I can be expressed as an explicit function. The main five parameters of interest of the function I(V) are the photocurrent, Iph, the saturation current in inverse diode, I0, the ideality factor of the diode, n, the resistance in series, RS and shunt resistance, RSh. We have used the Matlab to find the five parameters of the cell. To verify the proposed approach, we chose two different solar cells made of mono- and polycrystalline silicon. The comparison between the measured values and the results of the proposed model shows great precision. Finally, the values found of the five parameters by our approach are compared with those found by the method of least squares (MLS).

Forecasting commercial success of motion pictures remained challenging for producers, critics and other industry leaders in this changing world of web and online media. In this study, the author has explored a back-propagation neural network model with 23 numeric input (BPNN-N23) for classification of Bollywood movies released during the years 2014 through 2017. The proposed model classifies movies in three classes namely “HIT”, “AVERAGE” and “FLOP”. Common procedures like data filtering, data cleaning and data normalization have been followed prior to feeding those data to the neural network. After comparing the performance of the proposed model with the benchmark models and works, the results show that the said model shows performance that is comparable to the published ones with respect to the assumed Indian empirical settings. This research reveals the extent of the effects and roles of the considered factors as well as the proposed model in predicting the fate of a Bollywood movie in India.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 732
Author(s):  
Kairui Cao ◽  
Guanglu Hao ◽  
Qingfeng Liu ◽  
Liying Tan ◽  
Jing Ma

Fast steering mirrors (FSMs), driven by piezoelectric ceramics, are usually used as actuators for high-precision beam control. A FSM generally contains four ceramics that are distributed in a crisscross pattern. The cooperative movement of the two ceramics along one radial direction generates the deflection of the FSM in the same orientation. Unlike the hysteresis nonlinearity of a single piezoelectric ceramic, which is symmetric or asymmetric, the FSM exhibits complex hysteresis characteristics. In this paper, a systematic way of modeling the hysteresis nonlinearity of FSMs is proposed using a Madelung’s rules based symmetric hysteresis operator with a cascaded neural network. The hysteresis operator provides a basic hysteresis motion for the FSM. The neural network modifies the basic hysteresis motion to accurately describe the hysteresis nonlinearity of FSMs. The wiping-out and congruency properties of the proposed method are also analyzed. Moreover, the inverse hysteresis model is constructed to reduce the hysteresis nonlinearity of FSMs. The effectiveness of the presented model is validated by experimental results.


2020 ◽  
Vol 13 (1) ◽  
pp. 34
Author(s):  
Rong Yang ◽  
Robert Wang ◽  
Yunkai Deng ◽  
Xiaoxue Jia ◽  
Heng Zhang

The random cropping data augmentation method is widely used to train convolutional neural network (CNN)-based target detectors to detect targets in optical images (e.g., COCO datasets). It can expand the scale of the dataset dozens of times while consuming only a small amount of calculations when training the neural network detector. In addition, random cropping can also greatly enhance the spatial robustness of the model, because it can make the same target appear in different positions of the sample image. Nowadays, random cropping and random flipping have become the standard configuration for those tasks with limited training data, which makes it natural to introduce them into the training of CNN-based synthetic aperture radar (SAR) image ship detectors. However, in this paper, we show that the introduction of traditional random cropping methods directly in the training of the CNN-based SAR image ship detector may generate a lot of noise in the gradient during back propagation, which hurts the detection performance. In order to eliminate the noise in the training gradient, a simple and effective training method based on feature map mask is proposed. Experiments prove that the proposed method can effectively eliminate the gradient noise introduced by random cropping and significantly improve the detection performance under a variety of evaluation indicators without increasing inference cost.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1082
Author(s):  
Fanqiang Meng

Risk and security are two symmetric descriptions of the uncertainty of the same system. If the risk early warning is carried out in time, the security capability of the system can be improved. A safety early warning model based on fuzzy c-means clustering (FCM) and back-propagation neural network was established, and a genetic algorithm was introduced to optimize the connection weight and other properties of the neural network, so as to construct the safety early warning system of coal mining face. The system was applied in a coal face in Shandong, China, with 46 groups of data as samples. Firstly, the original data were clustered by FCM, the input space was fuzzy divided, and the samples were clustered into three categories. Then, the clustered data was used as the input of the neural network for training and prediction. The back-propagation neural network and genetic algorithm optimization neural network were trained and verified many times. The results show that the early warning model can realize the prediction and early warning of the safety condition of the working face, and the performance of the neural network model optimized by genetic algorithm is better than the traditional back-propagation artificial neural network model, with higher prediction accuracy and convergence speed. The established early warning model and method can provide reference and basis for the prediction, early warning and risk management of coal mine production safety, so as to discover the hidden danger of working face accident as soon as possible, eliminate the hidden danger in time and reduce the accident probability to the maximum extent.


2009 ◽  
Vol 610-613 ◽  
pp. 450-453
Author(s):  
Hong Yan Duan ◽  
You Tang Li ◽  
Jin Zhang ◽  
Gui Ping He

The fracture problems of ecomaterial (aluminum alloyed cast iron) under extra-low cycle rotating bending fatigue loading were studied using artificial neural networks (ANN) in this paper. The training data were used in the formation of training set of ANN. The ANN model exhibited excellent in results comparison with the experimental results. It was concluded that predicted fracture design parameters by the trained neural network model seem more reasonable compared to approximate methods. It is possible to claim that, ANN is fairly promising prediction technique if properly used. Training ANN model was introduced at first. And then the Training data for the development of the neural network model was obtained from the experiments. The input parameters, notch depth, the presetting deflection and tip radius of the notch, and the output parameters, the cycle times of fracture were used during the network training. The neural network architecture is designed. The ANN model was developed using back propagation architecture with three layers jump connections, where every layer was connected or linked to every previous layer. The number of hidden neurons was determined according to special formula. The performance of system is summarized at last. In order to facilitate the comparisons of predicted values, the error evaluation and mean relative error are obtained. The result show that the training model has good performance, and the experimental data and predicted data from ANN are in good coherence.


2012 ◽  
Vol 6-7 ◽  
pp. 1055-1060 ◽  
Author(s):  
Yang Bing ◽  
Jian Kun Hao ◽  
Si Chang Zhang

In this study we apply back propagation Neural Network models to predict the daily Shanghai Stock Exchange Composite Index. The learning algorithm and gradient search technique are constructed in the models. We evaluate the prediction models and conclude that the Shanghai Stock Exchange Composite Index is predictable in the short term. Empirical study shows that the Neural Network models is successfully applied to predict the daily highest, lowest, and closing value of the Shanghai Stock Exchange Composite Index, but it can not predict the return rate of the Shanghai Stock Exchange Composite Index in short terms.


Author(s):  
Dr. Gauri Ghule , Et. al.

Number of hidden neurons is necessary constant for tuning the neural network to achieve superior performance. These parameters are set manually through experimentation. The performance of the network is evaluated repeatedly to choose the best input parameters.Random selection of hidden neurons may cause underfitting or overfitting of the network. We propose a novel fuzzy controller for finding the optimal value of hidden neurons automatically. The hybrid classifier helps to design competent neural network architecture, eliminating manual intervention for setting the input parameters. The effectiveness of tuning the number of hidden neurons automatically on the convergence of a back-propagation neural network, is verified on speech data. The experimental outcomes demonstrate that the proposed Neuro-Fuzzy classifier can be viably utilized for speech recognition with maximum classification accuracy.


2012 ◽  
Vol 263-266 ◽  
pp. 2173-2178
Author(s):  
Xin Guang Li ◽  
Min Feng Yao ◽  
Li Rui Jian ◽  
Zhen Jiang Li

A probabilistic neural network (PNN) speech recognition model based on the partition clustering algorithm is proposed in this paper. The most important advantage of PNN is that training is easy and instantaneous. Therefore, PNN is capable of dealing with real time speech recognition. Besides, in order to increase the performance of PNN, the selection of data set is one of the most important issues. In this paper, using the partition clustering algorithm to select data is proposed. The proposed model is tested on two data sets from the field of spoken Arabic numbers, with promising results. The performance of the proposed model is compared to single back propagation neural network and integrated back propagation neural network. The final comparison result shows that the proposed model performs better than the other two neural networks, and has an accuracy rate of 92.41%.


2012 ◽  
Vol 217-219 ◽  
pp. 2722-2725
Author(s):  
Jian Xue Chen

Fault diagnosis is an important problem in the process of chemical industry and the artificial neural network is widely applied in fault diagnosis of chemical process. A hybrid algorithm combining ant colony optimization (ACO) algorithm with back-propagation (BP) algorithm, also referred to as ACO-BP algorithm, is proposed to train the neural network weights and thresholds. The basic theory and steps of ACO-BP algorithm are given, and applied in fault diagnosis of the continuous stirred-tank reactor (CSTR). Experimental results prove that ACO-BP algorithm has good fault diagnosis precision, and it can detect the fault in CSTR promptly and effectively.


2019 ◽  
Vol 290 ◽  
pp. 02009
Author(s):  
Tom Savu ◽  
Bogdan Alexandru Jugravu

When travelling in an industrial system for completing their assigned tasks, autonomous ground vehicles must estimate the remanent capacity of their batteries and decide if they are able to assume the next task and afterward travel to the charging or replacement station. The amount of energy needed for moving on a certain distance depends on a set of parameters belonging to the vehicle, to the runway and to the vehicle’s trajectory. The paper proposes a model for estimating the remaining capacity of the batteries after a certain distance would be covered by a vehicle. Parameters values were obtained by simulation, capacity loss was computed using the proposed model and then a neural network was taught to perform the estimation. The neural network was further used to simulate the situation when a vehicle is estimating the needed capacity before accepting a task to be performed. The results proved that the model and the network, even developed using low data volume and processing time, are able to provide accurate enough estimations and are able to allow future developments.


Sign in / Sign up

Export Citation Format

Share Document