A numerical study for determining the effect of raffia, alfa and sisal fibers on the fiber-matrix interface damage of biocomposite materials

2021 ◽  
Vol 14 ◽  
Author(s):  
Bouchra Achour ◽  
Allel Mokaddem ◽  
Bendouma Doumi ◽  
Abdelkader Ziadi ◽  
Lahcen Belarbi ◽  
...  

Background: : nowadays, the natural fibers are used in all industrial fields, particular in automotive technology and in civil engineering. this great emergence due to its biodegradability, recyclability and has no environmental effect. Objective: In this article, the effect of raffia, alfa and sisal fibers on the damage of biocomposite materials (raffia/PLA (polylactic acid), alfa/PLA and sisal/PLA), subjected to the same mechanical shear stress, has been investigated. Method: To calculate the damage to the interface, the genetic operator crossing are employed based on the fiber and matrix damage. Result: The results have shown that the raffia / PLA and alfa/PLA biocomposite materials are the better mechanical properties compared to sisal / PLA, this observation has been confirmed by the different values of interface damage of the biocomposite studied. Conclusion: The numerical results are similar and coincide perfectly with the results of Cox where he demonstrated that the Young's modulus of fibers improves the resistance of the interface. These conclusions are in very good agreement with our numerical data presented by the red cloud, and also in good agreement with the work presented by Antoine Le Duigou et al. and the work of Bodros et al. have shown that natural fibers greatly improve the physical characteristics of composite materials.

2014 ◽  
Vol 775-776 ◽  
pp. 284-289 ◽  
Author(s):  
Sergio Neves Monteiro ◽  
Frederico Muylaert Margem ◽  
Wellington Pereira Inácio ◽  
Artur Camposo Pereira ◽  
Michel Picanço Oliveira

The tensile properties of DGEBA/TETA epoxy matrix composites reinforced with different amounts of sisal fibers were evaluated. Composites reinforce with up to 30% in volume of long, continuous and aligned sisal fibers were room temperature tested in an Instron machine. The fracture was analyzed by SEM. The results showed significant changes in the mechanical properties with the amount of sisal fibers. These mechanical properties were compared with other bend-tested composites results. The fracture analysis revealed a weak fiber/matrix interface, which could be responsible for the performance of some properties.


2018 ◽  
Vol 180 ◽  
pp. 02047 ◽  
Author(s):  
Jan Kracik ◽  
Vaclav Dvorak ◽  
Vu Nguyen Van ◽  
Kamil Smierciew

These days, much effort is being put into lowering the consumption of electric energy and involving renewable energy sources. Many engineers and designers are trying to develop environment-friendly technologies worldwide. It is related to incorporating appropriate devices into such technologies. The object of this paper is to investigate these devices in connection with refrigeration systems. Ejectors can be considered such as these devices. The primary interest of this paper is to investigate the suitability of a numerical model for an ejector, which is incorporated into a refrigeration system. In the present paper, there have been investigated seven different test runs of working of the ejector with a working fluid R-1234ze(E). Some of the investigated cases seem to have a good agreement and there are no significant discrepancies between them, however, there are also cases that do not correspond to the experimental data at all. The ejector has been investigated in both on-design and off-design working modes. A comparison between the experimental and numerical data (CFD) performed by Ansys Fluent software is presented and discussed for both an ideal and a real gas model. In addition, an enhanced analytical model has been introduced for all runs of the ejector.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4603
Author(s):  
Marfa Camargo ◽  
Eyerusalem Adefrs Taye ◽  
Judith Roether ◽  
Daniel Tilahun Redda ◽  
Aldo Boccaccini

The use of ecological materials for building and industrial applications contributes to minimizing the environmental impact of new technologies. In this context, the cement and geopolymer sectors are considering natural fibers as sustainable reinforcement for developing composites. Natural fibers are renewable, biodegradable, and non-toxic, and they exhibit attractive mechanical properties in comparison with their synthetic fiber counterparts. However, their hydrophilic character makes them vulnerable to high volumes of moisture absorption, thus conferring poor wetting with the matrix and weakening the fiber–matrix interface. Therefore, modification and functionalization strategies for natural fibers to tailor interface properties and to improve the durability and mechanical behavior of cement and geopolymer-based composites become highly important. This paper presents a review of the physical, chemical and biological pre-treatments that have been performed on natural fibers, their results and effects on the fiber–matrix interface of cement and geopolymer composites. In addition, the degradation mechanisms of natural fibers used in such composites are discussed. This review finalizes with concluding remarks and recommendations to be addressed through further in-depth studies in the field.


2021 ◽  
Author(s):  
Imene ASSAF ◽  
Mohammed BELKHEIR ◽  
Allel MOKADDEM ◽  
Bendouma DOUMI ◽  
Ahmed BOUTAOUS

In this article, a comparative study was carried out on two types of thermosetting and thermoplastic matrices to study the effect of the fiber-matrix interface damage on the behavior of thermosetting and thermoplastic composites reinforced by the same natural alfa and wood fibers. The genetic modeling was based on the probabilistic formalism of Weibull. The results have been compared with those obtained by the nonlinear acoustic technique, the two results found to coincide perfectly. The numerical simulation also shows a good concordance with the real behavior of the materials studied, and shows that thermosetting composites are the most resistant to applied thermal stress by 21% compared to thermoplastic composites. Statistical analysis demonstrates that the correlation coefficient values found are very close to 1 (0.964 and 0.973), these values are very satisfactory, and confirm that the results obtained by the genetic model and the nonlinear acoustic technique are in very good agreement with the statistical analysis data. The experimental work presented by Antoine Le Duigou et al. and the work of Bodros et al. have shown that the use of natural fibers greatly improves the mechanical properties of composite materials.


2019 ◽  
Vol 12 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Khadidja Atig ◽  
Allel Mokaddem ◽  
Mohamed Meskine ◽  
Bendouma Doumi ◽  
Mohammed Belkheir ◽  
...  

Background:In this article, we have studied the effect of cellulose fibers ratio on the fiber matrix interface damage of biocomposite materials based on a Polypropylene (PP) matrix.Methods:Few patents on the effect of cellulose fibers ratio on the fiber-matrix interface damage of biocomposite materials were published. We have investigated this damage, using a metaheuristic simulation based on the two Weibull probabilistic models which successively described the damage of the fiber and the matrix, our objective function is presented by the Cox model.Results:The results of our genetic modeling confirm that the level of damage is related to the mechanical stresses applied to the five studied materials Cotton-Polypropylene, Jute-Polypropylene, Flax- Polypropylene, Ramie-Polypropylene and Aramid-Polypropylene. Our genetic modeling indicates that the rate of cellulose in each fiber has a significant influence on the progressive degradation of the interface. The numerical simulation compared to the result obtained by genetic algorithm for the Aramid- Polypropylene composite shows that the level of degradation of the interface is greater compared to other biocomposite materials and that Cotton-Polypropylene has a very low interface damage compared to other biocomposites (82.5% cellulose).Conclusion:It can thus be said that the model correctly took into account the degradation phenomenon of a unidirectional composite and biocomposite and our calculations coincide perfectly with the conclusions of Antoine et al. who determined that the rate of cellulose in each fiber participates in the improvement of the mechanical properties of biocomposite materials.


Sign in / Sign up

Export Citation Format

Share Document