Numerical Study of Interior Trajectory of Missile Ejection Based on Mechanics

2012 ◽  
Vol 485 ◽  
pp. 616-619 ◽  
Author(s):  
Yong Quan Liu ◽  
An Min Xi ◽  
Hong Fei Liu

An interior trajectory simulation of the gas-steam missile ejection has been developed with the help of FLUENT software. One of the special features of this simulation is the method by which the coupled two-phase problem is reduced to solving the fluid equations only. The calculation has been done efficiently in FLUENT after setting all the required parameters and adding the source terms. Several figures of the velocity and pressure have been given to show the flow field in the reservoir. The distribution curves of the velocity and acceleration of the missile show that the results of the simulation are in good agreement with the test data of the experiments. This model can be used to analyze the similar launch procedures in practice.

2011 ◽  
Vol 130-134 ◽  
pp. 3624-3627
Author(s):  
W.L. Wei ◽  
Zhang Pei ◽  
Y.L. Liu

In this paper, we use two-phase mixture model and the Realizable k-ε turbulence model to numerically simulate the advection secondary flow in a sedimentation tank. The PISO algorithm is used to decouple velocity and pressure. The comparisons between the measured and computed data are in good agreement, which indicates that the model can fully simulate the flow field in a sedimentation tank.


2020 ◽  
pp. 002029402096423
Author(s):  
Shi Rui Guo ◽  
Qian Qian Yin ◽  
Lu Jun Cui ◽  
Xiao Lei Li ◽  
Ying Hao Cui ◽  
...  

This paper investigates the influence of carrier gas flow on the external flow field of coaxial powder feeding nozzle. FLUENT software was adopted to establish gas-solid two-phase flow. The simulation of powder stream field under different carrier gas flow was also carried out. Results show that the larger the flow of carrier gas is, the higher the gas flow field velocity at the nozzle outlet is. At the same time, the concentration at the convergence point is lower, and the convergent point is maintained at 0.015 m. Under the condition of 4 L/min, the powder flow convergence is good. When it exceeds 4 L/min, powder spot diameter increases. The experiment of powder aggregation and laser cladding forming were completed, which shows that the forming effect is the best one under the condition of 4 L/min. It is consistent with the simulation analysis results and has a high reference to the optimization of the process parameters of coaxial nozzle.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Mohammad Nasiri-lohesara

Turbulent forced convection ofγ-Al2O3/water nanofluid in a concentric double tube heat exchanger has been investigated numerically using mixture two-phase model. Nanofluids are used as coolants flowing in the inner tube while hot pure water flows in outer tube. The studies are conducted for Reynolds numbers ranging from 20,000 to 50,000 and nanoparticle volume fractions of 2, 3, 4, and 6 percent. Results showed that nanofluid has no effects on fully developed length and average heat transfer coefficient enhances with lower slope than wall shear stress. Comparisons with experimental correlation in literature are conducted and good agreement with present numerical study is achieved.


2013 ◽  
Vol 313-314 ◽  
pp. 1030-1033
Author(s):  
Shui Hua Zheng ◽  
Jie Gang Mu ◽  
Wen Can Fan

Based on the heat and mass transfer theory and characteristics of the FLUENT software, a numerical simulation platform had been developed to study the heat exchange and flow situation of gas-liquid two-phase flow in vertical helically coiled pipe. The frictional resistance of gas-liquid two-phase flow in the pipe was investigated by this platform. The results show that frictional pressure drop is relatively small under high pressure condition and increases with the increasing gas quality. This platform could provide a good support for the design and research of vertical helically coiled pipe.


2018 ◽  
Vol 180 ◽  
pp. 02047 ◽  
Author(s):  
Jan Kracik ◽  
Vaclav Dvorak ◽  
Vu Nguyen Van ◽  
Kamil Smierciew

These days, much effort is being put into lowering the consumption of electric energy and involving renewable energy sources. Many engineers and designers are trying to develop environment-friendly technologies worldwide. It is related to incorporating appropriate devices into such technologies. The object of this paper is to investigate these devices in connection with refrigeration systems. Ejectors can be considered such as these devices. The primary interest of this paper is to investigate the suitability of a numerical model for an ejector, which is incorporated into a refrigeration system. In the present paper, there have been investigated seven different test runs of working of the ejector with a working fluid R-1234ze(E). Some of the investigated cases seem to have a good agreement and there are no significant discrepancies between them, however, there are also cases that do not correspond to the experimental data at all. The ejector has been investigated in both on-design and off-design working modes. A comparison between the experimental and numerical data (CFD) performed by Ansys Fluent software is presented and discussed for both an ideal and a real gas model. In addition, an enhanced analytical model has been introduced for all runs of the ejector.


2013 ◽  
Vol 419 ◽  
pp. 186-191
Author(s):  
Xiao Fei Zhou ◽  
Yi Jiang ◽  
Yu Sen Niu ◽  
Shao Zhen Yu

Simulation of the launching process in concentration water injection launcher, and get the parameter variations during the launch process, compared with traditional engineering algorithm, verify the reliability of the simulation results, given a new research method of interior ballistics on this launch system. This simulation has very important meaning for the temperature and pressure checking at the Beginning of the design. The simulation results show that,after the flow field stable,the average temperature and pressure in low-pressure chamber and the sabot are very close. This article uses the FLUENT software, use Mixture two-phase flow calculation model to solve the gas-liquid flow field, use the dynamic mesh and UDF program to simulation the flow field.


2010 ◽  
Vol 29-32 ◽  
pp. 143-148
Author(s):  
Min Xiang ◽  
S.C.P. Cheung ◽  
Ji Yuan Tu ◽  
Wei Hua Zhang ◽  
Yang Fei

The aim of the study was to develop a numerical model to reproduce the bubbly flow field created by ventilated cavity which includes three different regions. The model was established based on the Eulerian-Eulerian two-fluid model coupled with a population balance approach which is solved by the Homogeneous Multiple-Size-Group (MUSIG) model to predict bubble size distribution. Base on the model, the simulation was carried out at the experimental condition of Su et al. (1995). Firstly three regions were successfully captured proved by the spatial voidage distribution and streamline shape. Then distributions of void fraction and Sauter mean bubble diameter at various sections below the cavity corresponding to three regions respectively were plotted against experimental data. A close agreement was observed in the void fraction distribution which indicates that qualitative details of the structure of the two-phase flow field below the cavity was successfully produced. The Sauter mean bubble diameter in the pipe flow region was under-predicted for about 10%. In conclusion, the proposed model was validated in predicting the multi-region flow field below the ventilated cavity which will provide a valuable insight in designing and controlling of the two phase systems with the detailed flow field information obtained.


2013 ◽  
Vol 397-400 ◽  
pp. 213-217
Author(s):  
Ming Wei Ding ◽  
Chang Jing Fu ◽  
Si Bei Yin

Based on the theory of gas-solid two-phase flow, abrasive flows in ceramic nozzles with different structures are simulated by FLUENT software and the outflow velocity of particles is compared. The results show: the abrasive outflow velocity of ceramic nozzle with cone angle is large than that of ceramic nozzle with through-hole structure, and the distribution of abrasive particles is more uniform for the ceramic nozzle with cone angle. The best entrance cone angle of ceramic nozzle is 10o30o, and the maximum abrasive outflow velocity of the ceramic nozzle with cone angle of 20o is 90.16 m/s. The simulation results have a good agreement with the experimental results.


2000 ◽  
Vol 122 (4) ◽  
pp. 754-760 ◽  
Author(s):  
Y. Murai ◽  
Y. Matsumoto

The whole behavior and the micro scale flow characteristics of a three-dimensional bubble plume are investigated numerically. The bubble plume drives liquid convection in a tank due to strong local two-phase interaction so that the Eulerian-Lagrangian model is formulated with emphasis on the translational motions of the bubble. In this model, each bubble motion is tracked in a bubbly mixture which is treated as a continuum. The three-dimensional numerical results reveal several particular structures, such as swaying and swirling structures of the bubble plume. These simulated flow structures show qualitatively good agreement with the experimental observations. Furthermore, the detailed behavior in the bubble plume is clarified by various analysis to discuss the dominant factors causing such the strong three-dimensionality. [S0098-2202(00)00904-4]


Sign in / Sign up

Export Citation Format

Share Document