scholarly journals PIV measurements of airflow past multiple cylinders

2018 ◽  
Vol 180 ◽  
pp. 02121
Author(s):  
Waldemar Wodziak ◽  
Jacek Sobczyk

Flow characteristics in vicinity of six circular cylinders aligned inline was investigated experimentally by means of PIV method. Experiments were conducted in a low speed closed circuit wind tunnel. Inflow velocity was 1.2 m/s which corresponds to Re=1600 based on the cylinder diameter. Spacing ratio between cylinders L/D was 1.5. Instantaneous and averaged velocity fields were presented. Experiments were designed in order to use their results as a test case for future numerical calculations.

2014 ◽  
Vol 670-671 ◽  
pp. 747-750
Author(s):  
Zhi Jun Gong ◽  
Jiao Yang ◽  
Wen Fei Wu

For indepth study on flow characteristics for fluid bypass obstacles in micro-channel, the Lattice Boltzmann Method (LBM) was used to simulate fluid flow over two circular cylinders in side-by-side arrangement of a micro-channel. The velocity distribution and recirculation zone length under different Reynolds numbers (Re = 0~100) and different spacing ratio (H/D= 0~2.0) were obtained. The results show that the pattern of flow and the size of recirculation zone in the micro-channel depend on the combined effect of Re and H/D.


Author(s):  
Yangyang Gao ◽  
Xikun Wang ◽  
Soon Keat Tan

The wake structure behind two staggered circular cylinders with unequal diameters was investigated experimentally using the particle image velocimetry technique (PIV). This investigation was focused on the variations of flow patterns in terms of incident angle at Reynolds number Re = 1200. Comparisons of the time-averaged flow field of two staggered cylinders with unequal diameters at different angles were made to elucidate the mean flow characteristics. The characteristics of Reynolds shear stress contours at different incident angles and spacing ratios were also investigated. The results showed that with increasing of incident angle, the scale of Reynolds stress contours behind the upstream cylinder becomes larger, as well as the effect of spacing ratio on Reynolds stress contours.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Mohammed Alziadeh ◽  
Atef Mohany

Abstract The aeroacoustic response of two tandem spirally finned cylinders is experimentally investigated. Three different pairs of finned cylinders are studied with fin pitch-to-root diameter ratios (p/Dr) ranging between 0.37≤p/Dr≤0.74. The spiral fins are crimped similar to those used in industrial heat exchangers. The results of the finned cylinders are compared with bare, circular cylinders with a modified equivalent diameter (Deq). The spacing ratio (L/Deq) between the cylinders are kept constant at L/Deq=2.00. The Strouhal number (StDeq) of the tandem finned cylinders is found to be higher compared to the tandem bare cylinders, resulting in an earlier onset of coincidence resonance. Moreover, unlike the tandem bare cylinders, the Strouhal number of the finned cylinders did not depend on the Reynolds number, suggesting that the flow characteristics around the finned cylinders are unaffected by Reynolds number. Only the tandem finned cylinders with the lowest fin pitch-to-root diameter ratio (p/Dr=0.37) were capable of exciting precoincidence acoustic resonance. The precoincidence resonance mechanism is similar to that observed in in-line tube bundles.


2014 ◽  
Vol 493 ◽  
pp. 245-250 ◽  
Author(s):  
A.Grummy Wailanduw ◽  
Triyogi Yuwono ◽  
Wawan Aries Widodo

The flow characteristics around four circular cylinders in equispaced arrangement located near a plane wall were investigated experimentally. The pressure distributions on the each cylinder surface and on the plane wall were measured for a spacing ratio L/D= 1.5 (L, center to center spacing between cylinders; D, diameter) and G/D= 0.2 (G, gap spacing between cylinder surface and the plane wall) in a uniform flow at a Reynolds Number of 5.3 x 104. The 2D U-RANS numerical simulation with k-ω SST as viscous model was used to visualize the flow phenomena occured around the cylinders. The results showed that the flow tend to be biased on the upper side of cylinders configuration. It causes the stagnation at the upstream cylinders occured at lower side of cylinders and results a formation of a narrower wake behind the third cylinder and a wider wake behind the fourth cylinder.Keywords: equispaced arrangement, circular cylinders, plane wall


2018 ◽  
Vol 180 ◽  
pp. 02030
Author(s):  
Renata Gnatowska ◽  
Marcin Sosnowski

The paper presents the results of experimental and numerical research focused on the reduction of fuel consumption of vehicles driving one after another in a so-called platoon arrangement. The aerodynamic parameters and safety issues were analyzed in order to determine the optimal distance between the vehicles in traffic conditions. The experimental research delivered the results concerning the drag and was performed for simplified model of two vehicles positioned in wind tunnel equipped with aerodynamic balance. The additional numerical analysis allowed investigating the pressure and velocity fields as well as other aerodynamics parameters of the test case.


Author(s):  
G Mazzeo ◽  
MN Ichchou ◽  
G Petrone ◽  
O Bareille ◽  
S De Rosa ◽  
...  

In the wind tunnel facility, a test structure is often used for measuring its vibrational response to the aerodynamic excitation. A support is needed to sustaining the structure and it is mandatory that this support does not influence the vibrational energy to be measured. To this aim, the maximum amount of energy decoupling between the structure and the support is desired. This work is focused around a quick method to estimate this decoupling by using simplified models for the Turbulent Boundary Layer (TBL) excitation and for the structural response. Specifically, the Equivalent Rain-on-the-roof excitation is invoked with a Statistical Energy Analysis model for the structure. Some simple design rules are proposed and based on little information leading to foresee the difference of vibrational velocity levels between the two structural systems. A simplified test-case is used for the first investigations and a complex structure is finally conceived thinking to vibroacoustic measurements in a large wind tunnel facility. Although some results are largely expected, the global approach is promising.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Francesco Fornarelli ◽  
Antonio Lippolis ◽  
Paolo Oresta

In this paper, we found, by means of numerical simulations, a transition in the oscillatory character of the flow field for a particular combination of buoyancy and spacing in an array of six circular cylinders at a Reynolds number of 100 and Prandtl number of 0.7. The cylinders are isothermal and they are aligned with the earth acceleration (g). According to the array orientation, an aiding or an opposing buoyancy is considered. The effect of natural convection with respect to the forced convection is modulated with the Richardson number, Ri, ranging between −1 and 1. Two values of center-to-center spacing (s = 3.6d–4d) are considered. The effects of buoyancy and spacing on the flow pattern in the near and far field are described. Several transitions in the flow patterns are found, and a parametric analysis of the dependence of the force coefficients and Nusselt number with respect to the Richardson number is reported. For Ri=−1, the change of spacing ratio from 3.6 to 4 induces a transition in the standard deviation of the force coefficients and heat flux. In fact, the transition occurs due to rearrangement of the near-field flow in a more ordered wake pattern. Therefore, attention is focused on the influence of geometrical and buoyancy parameters on the heat and momentum exchange and their fluctuations. The available heat exchange models for cylinders array provide a not accurate prediction of the Nusselt number in the cases here studied.


1968 ◽  
Vol 90 (2) ◽  
pp. 395-404 ◽  
Author(s):  
H. N. Ketola ◽  
J. M. McGrew

A theory of the partially wetted rotating disk is described and experimental data presented which verify the application of this theory in practical applications. Four different flow regimes may be identified according to the value of the disk Reynolds number and the spacing ratio between the disk and stationary wall. The analytical expressions for prediction of the pressure gradient developed and the frictional resistance are uniquely determined by the disk Reynolds number, spacing ratio, and the degree of wetting of the disk.


Sign in / Sign up

Export Citation Format

Share Document