scholarly journals Unique observatories for sea science and particle astrophysics: The EMSO-Antares and EMSO-Western Ionian nodes in the Mediterranean Sea

2019 ◽  
Vol 207 ◽  
pp. 09004
Author(s):  
Dominique Lefevre ◽  
Bruno Zakardkjian ◽  
Daniele Embarcio

We describe two of the nodes of the European Multi-disciplinary Seafloor and water-column Observatory (EMSO) which are closely connected to the two sites of the KM3NeT infrastructure: EMSO-Antares in the West Ligurian sea and the EMSO Western Ionian Sea Node. We present the general characteristics and objectives of both nodes and illustrate their capabilities with some illustrative results.

2001 ◽  
Vol 50 (2) ◽  
pp. 411-419 ◽  
Author(s):  
Fabio Spadi

The Strait of Messina is a body of water in the Mediterranean Sea separating the island of Sicily to the west from mainland Italy to the east, linking the Lower Tyrrhenian Sea with the Ionian Sea. The strait is around 30 miles long and its width ranges from 13/4 miles (between Faro Point and the Rock of Scylla) to 10 miles (between Cape Alì and Cape Pellaro). At its northern end it reaches, at one point, a minimum depth of 70 metres.1


Check List ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 1646 ◽  
Author(s):  
F. Tiralongo ◽  
R. Baldacconi

Microlipophrys adriaticus (Steindachner & Kolombatovic, 1883) is an endemic blenny of the Mediterranean Sea. It is also known from the Sea of Marmara and the Black Sea. However, unlike other species of combtooth blennies, M. adriaticus is a fish with a limited distribution in Adriatic Sea, especially in the north, where it can be common. We report here the first record of this species from the waters of the Ionian Sea.


2021 ◽  
Vol 8 ◽  
Author(s):  
Neele Schmidt ◽  
Yusuf C. El-Khaled ◽  
Felix I. Roßbach ◽  
Christian Wild

In the Mediterranean Sea, the fleshy red alga Phyllophora crispa forms dense mats of up to 15 cm thickness, mainly located on rocky substrates in water depths below 20 m. Because of the observed density of these mats and some first observations, we hypothesize that P. crispa is a yet undescribed ecosystem engineer that provides a multitude of ecological niches for associated organisms along small-scale environmental gradients. Therefore, we conducted an in-situ pilot study in the Western Mediterranean Sea to assess potential influence of the algae mats on the key environmental factors water movement, temperature and light intensity. We comparatively and simultaneously measured in P. crispa mats, in neighboring Posidonia oceanica seagrass meadows, on neighboring bare rocky substrates without algae mats, and in the directly overlying water column. We used several underwater logging sensors and gypsum clod cards. Findings revealed that P. crispa significantly reduced water movement by 41% compared to the overlying water column, whereas water movement was not affected by P. oceanica meadows and bare rocky substrates. Surprisingly, P. crispa increased the water temperature by 0.3°C relative to the water column, while the water temperature in P. oceanica and on bare rocky substrates was reduced by 0.5°C. Light intensity inside the red algae mats was reduced significantly by 69% compared to the water column. This was similar to measured light reduction of 77% by P. oceanica. These findings highlight the strong influence of the dense red algae mats on some key environmental factors. Their influence is obviously similar or even higher than for the well-known seagrass ecosystem engineer. This may be a factor that facilitates associated biodiversity similarly as described for P. oceanica.


Author(s):  
Carlo Nike Bianchi ◽  
Francesco Caroli ◽  
Paolo Guidetti ◽  
Carla Morri

Global warming is facilitating the poleward range expansion of plant and animal species. In the Mediterranean Sea, the concurrent temperature increase and abundance of (sub)tropical non-indigenous species (NIS) is leading to the so-called ‘tropicalization’ of the Mediterranean Sea, which is dramatically evident in the south-eastern sectors of the basin. At the same time, the colder north-western sectors of the basin have been said to undergo a process of ‘meridionalization’, that is the establishment of warm-water native species (WWN) previously restricted to the southern sectors. The Gulf of Genoa (Ligurian Sea) is the north-western reach for southern species of whatever origin in the Mediterranean. Recent (up to 2015) observations of NIS and WWN by diving have been collated to update previous similar inventories. In addition, the relative occurrences of both groups of southern species have been monitored by snorkelling between 2009 and 2015 in shallow rocky reefs at Genoa, and compared with the trend in air and sea surface temperatures. A total of 20 southern species (11 NIS and 9 WWN) was found. Two WWN (the zebra seabream Diplodus cervinus and the parrotfish Sparisoma cretense) and three NIS (the SW Atlantic sponge Paraleucilla magna, the Red Sea polychaete Branchiomma luctuosum, and the amphi-American and amphi-Atlantic crab Percnon gibbesi) are new records for the Ligurian Sea, whereas juveniles of the Indo-Pacific bluespotted cornetfish Fistularia commersonii have been found for the first time. While temperature has kept on increasing for the whole period, with 2014 and 2015 being the warmest years since at least 1950, the number of WWN increased linearly, that of NIS increased exponentially, contradicting the idea of meridionalization and supporting that of tropicalization even in the northern sectors of the Mediterranean basin.


Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 176 ◽  
Author(s):  
Giovanni Chimienti

The pink sea fan Eunicella verrucosa (Cnidaria, Anthozoa, Alcyonacea) can form coral forests at mesophotic depths in the Mediterranean Sea. Despite the recognized importance of these habitats, they have been scantly studied and their distribution is mostly unknown. This study reports the new finding of E. verrucosa forests in the Mediterranean Sea, and the updated distribution of this species that has been considered rare in the basin. In particular, one site off Sanremo (Ligurian Sea) was characterized by a monospecific population of E. verrucosa with 2.3 ± 0.2 colonies m−2. By combining new records, literature, and citizen science data, the species is believed to be widespread in the basin with few or isolated colonies, and 19 E. verrucosa forests were identified. The overall associated community showed how these coral forests are essential for species of conservation interest, as well as for species of high commercial value. For this reason, proper protection and management strategies are necessary.


Ocean Science ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 431-453
Author(s):  
Rebeca de la Fuente ◽  
Gábor Drótos ◽  
Emilio Hernández-García ◽  
Cristóbal López ◽  
Erik van Sebille

Abstract. We study the vertical dispersion and distribution of negatively buoyant rigid microplastics within a realistic circulation model of the Mediterranean sea. We first propose an equation describing their idealized dynamics. In that framework, we evaluate the importance of some relevant physical effects (inertia, Coriolis force, small-scale turbulence and variable seawater density), and we bound the relative error of simplifying the dynamics to a constant sinking velocity added to a large-scale velocity field. We then calculate the amount and vertical distribution of microplastic particles on the water column of the open ocean if their release from the sea surface is continuous at rates compatible with observations in the Mediterranean. The vertical distribution is found to be almost uniform with depth for the majority of our parameter range. Transient distributions from flash releases reveal a non-Gaussian character of the dispersion and various diffusion laws, both normal and anomalous. The origin of these behaviors is explored in terms of horizontal and vertical flow organization.


2008 ◽  
Vol 9 (2) ◽  
pp. 125 ◽  
Author(s):  
A. OCCHIPINTI-AMBROGI ◽  
B.S. GALIL

A school of Fistularia commersonii was sighted off Laigueglia (Italy), Northwestern Ligurian Sea, inAugust 2008. This fast spreading invasive Indo-Pacific fish was first recorded in the Mediterranean fromIsrael, and it has since spread clear across the sea. This is the northernmost record from the Mediterranean.


2020 ◽  
Author(s):  
Birthe Zäncker ◽  
Michael Cunliffe ◽  
Anja Engel

Abstract. The sea surface microlayer (SML) represents the boundary layer at the air-sea interface. Microbial eukaryotes in the SML potentially influence air-sea gas exchange directly by taking up and producing gases, and indirectly by excreting and degrading organic matter, which may modify the viscoelastic properties of the SML. However, little is known about the controlling factors that influence microbial eukaryote community composition in the SML. We studied the composition of the microbial community, transparent exopolymer particles and polysaccharides in the SML during the PEACETIME cruise along a west-east transect in the Mediterranean Sea, covering the western basin, Tyrrhenian Sea and Ionian Sea. At the stations located in the Ionian Sea, fungi were found in high relative abundances determined by 18S sequencing efforts, making up a significant proportion of the sequences recovered. At the same time, bacterial and phytoplankton counts were decreasing from west to east, while transparent exopolymer particle (TEP) abundance and total carbohydrate (TCHO) concentrations remained the same between Mediterranean basins. Thus, the presence of substrates for fungi, such as Cladosporium known to take up phytoplankton-derived polysaccharides, in combination with decreased substrate competition by bacteria suggests that fungi could be thriving in the neuston of the Ionian Sea.


Sign in / Sign up

Export Citation Format

Share Document