scholarly journals Average shape of longitudinal shower profiles measured at the Pierre Auger Observatory

2019 ◽  
Vol 210 ◽  
pp. 02015
Author(s):  
Sofia Andringa ◽  

The average profiles of cosmic ray shower development as a function of atmospheric depth are measured for the first time with the Fluorescence Detectors at the Pierre Auger Observatory. The profile shapes are well reproduced by the Gaisser-Hillas parametrization at the 1% level in a 500 g/cm2 interval around the shower maximum, for cosmic rays with log(E/eV) > 17.8. The results are quantified with two shape parameters, measured as a function of energy. The average profiles carry information on the primary cosmic ray and its high energy hadronic interactions. The shape parameters predicted by the commonly used models are compatible with the measured ones within experimental uncertainties. Those uncertainties are dominated by systematics which, at present, prevent a detailed composition analysis.

2019 ◽  
Vol 208 ◽  
pp. 08003 ◽  
Author(s):  
Raul R. Prado

The hybrid design of the Pierre Auger Observatory allows for the measurement of a number of properties of extensive air showers initiated by ultra-high energy cosmic rays. By comparing these measurements to predictions from air shower simulations, it is possible to both infer the cosmic ray mass composition and test hadronic interactions beyond the energies reached by accelerators. In this paper, we will present a compilation of results of air shower measurements by the Pierre Auger Observatory which are sensitive to the properties of hadronic interactions and can be used to constrain the hadronic interaction models. The inconsistencies found between the interpretation of different observables with regard to primary composition and between their measurements and simulations show that none of the currently used hadronic interaction models can provide a proper description of air showers and, in particular, of the muon production.


2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


2012 ◽  
Vol 18 ◽  
pp. 221-229
Author(s):  
◽  
J. R. T. DE MELLO NETO

We present the status and the recent measurements from the Pierre Auger Observatory. The energy spectrum is described and its features discussed. We report searches for anisotropy of cosmic rays arrival directions in large scales and through correlation with catalogues of celestial objects. The measurement of the cross section proton-air is discussed. Finally, the mass composition is addressed with the measurements of the variation of the depth of shower maximum with energy and with the muon density at ground.


2019 ◽  
Vol 210 ◽  
pp. 02009
Author(s):  
Jean-Noël Capdevielle ◽  
Zbigniew Plebaniak ◽  
Barbara Szabelska ◽  
Jacek Szabelski

The model HDPM of CORSIKA has been updated and developed on the base of the recent measurements by ALICE, CMS, TOTEM, LHCb, LHCf... The new model, GHOST, involving a four-source production reproduces correctly the pseudo-rapidity distributions of charged secondaries and has been tested with the data in the mid and forward rapidity region, especially in the complex case of TOTEM, and also with the recent measurements of CMS, up to $ \sqrt s = 13\,{\rm{TeV}} $ (9.0 1016 eV in laboratory system). Special calculations have been devoted to the semi-inclusive data playing an important role in the cosmic ray simulation (fluctuations in earliest collisions, individual cascades measured at high altitude with high energy emulsion chambers). Taking into account the violation of KNO scaling, the negative binomial distribution (NegBin-expressed in terms of scaled elements) $ z = {n \mathord{\left/ {\vphantom {n {\bar {n}}}} \right. \kern-\nulldelimiterspace} {\bar {n}}} $ (n is the number of charged secondaries) has been used pointing out a possible asymptotic behaviour of total charged multiplicities at primary energies exceeding 40 TeV (8.5 1017 eV). Thus, larger reduction of the energies devoted to the leading cluster and very large multiplicity of secondary particles could suggest for EAS generated by primary protons a larger production of muons and a shower maximum at higher altitude.


2019 ◽  
Vol 208 ◽  
pp. 08007 ◽  
Author(s):  
Dennis Soldin

IceCube is a cubic-kilometer Cherenkov detector in the deep ice at the geographic South Pole. The dominant event yield is produced by penetrating atmospheric muons with energies above several 100 GeV. Due to its large detector volume, IceCube provides unique opportunities to study atmospheric muons with large statistics in detail. Measurements of the energy spectrum and the lateral separation distribution of muons offer insights into hadronic interactions during the air shower development and can be used to test hadronic models. We will present an overview of various measurements of atmospheric muons in IceCube, including the energy spectrum of muons between 10 TeV and 1 PeV. This is used to derive an estimate of the prompt contribution of muons, originating from the decay of heavy (mainly charmed) hadrons and unflavored mesons. We will also present measurements of the lateral separation distributions of TeV muons between 150m and 450m for several initial cosmic ray energies between 1 PeV and 16 PeV. Finally, the angular distribution of atmospheric muons in IceCube will be discussed.


Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 128 ◽  
Author(s):  
Dariusz Góra ◽  

The Pierre Auger Observatory is the world’s largest operating detection system for the observation of ultra high energy cosmic rays (UHECRs), with energies above 10 17 eV. The detector allows detailed measurements of the energy spectrum, mass composition and arrival directions of primary cosmic rays in the energy range above 10 17 eV. The data collected at the Auger Observatory over the last decade show the suppression of the cosmic ray flux at energies above 4 × 10 19 eV. However, it is still unclear if this suppression is caused by the energy limitation of their sources or by the Greisen–Zatsepin–Kuzmin (GZK) cut-off. In such a case, UHECRs would interact with the microwave background (CMB), so that particles traveling long intergalactic distances could not have energies greater than 5 × 10 19 eV. The other puzzle is the origin of UHECRs. Some clues can be drawn from studying the distribution of their arrival directions. The recently observed dipole anisotropy has an orientation that indicates an extragalactic origin of UHECRs. The Auger surface detector array is also sensitive to showers due to ultra high energy neutrinos of all flavors and photons, and recent neutrino and photon limits provided by the Auger Observatory can constrain models of the cosmogenic neutrino production and exotic scenarios of the UHECRs origin, such as the decays of super heavy, non-standard-model particles. In this paper, the recent results on measurements of the energy spectrum, mass composition and arrival directions of cosmic rays, as well as future prospects are presented.


2019 ◽  
Vol 208 ◽  
pp. 15001
Author(s):  
Frank G. Schröder

Antenna arrays are beginning to make important contributions to high energy astroparticle physics supported by recent progress in the radio technique for air showers. This article provides an update to my more extensive review published in Prog. Part. Nucl. Phys. 93 (2017) 1. It focuses on current and planned radio arrays for atmospheric particle cascades, and briefly references to a number of evolving prototype experiments in other media, such as ice. While becoming a standard technique for cosmic-ray nuclei today, in future radio detection may drive the field for all type of primary messengers at PeV and EeV energies, including photons and neutrinos. In cosmic-ray physics accuracy becomes increasingly important in addition to high statistics. Various antenna arrays have demonstrated that they can compete in accuracy for the arrival direction, energy and position of the shower maximum with traditional techniques. The combination of antennas and particles detectors in one array is a straightforward way to push the total accuracy for high-energy cosmic rays for low additional cost. In particular the combination of radio and muon detectors will not only enhance the accuracy for the cosmic-ray mass composition, but also increase the gamma-hadron separation and facilitate the search for PeV and EeV photons. Finally, the radio technique can be scaled to large areas providing the huge apertures needed for ultra-high-energy neutrino astronomy.


2016 ◽  
Vol 25 (14) ◽  
pp. 1650103 ◽  
Author(s):  
M. S. Pshirkov

Quark matter which contains [Formula: see text]-quarks in addition to [Formula: see text]- and [Formula: see text]- could be stable or metastable. In this case, lumps made of this strange matter, called strangelets, could occasionally hit the Earth. When travelling through the atmosphere they would behave not dissimilar to usual high-velocity meteors with only exception that, eventually, strangelets reach the surface. As these encounters are expected to be extremely rare events, very large exposure is needed for their observation. Fluorescence detectors utilized in large ultra-high energy cosmic ray observatories, such as the Pierre Auger observatory and the Telescope Array are well suited for a task of the detection of these events. The flux limits that can be obtained with the Telescope Array fluorescence detectors could be as low as 2.5 × 10−22 cm−2s−1sr−1 which would improve by two orders of magnitude of the strongest present limits obtained from ancient mica crystals.


2019 ◽  
Vol 209 ◽  
pp. 01029
Author(s):  
Daniela Mockler

The flux of ultra-high energy cosmic rays above 3×1017 eV has been measured with unprecedented precision at the Pierre Auger Observatory. The flux of the cosmic rays is determined by four different measurements. The surface detector array provides three data sets, two formed by dividing the data into two zenith angle ranges, and one obtained from a nested, denser detector array. The fourth measurement is obtained with the fluorescence detector. By combing all four data sets, the all-sky flux of cosmic rays is determined. The spectral features are discussed in detail and systematic uncertainties are addressed.


Sign in / Sign up

Export Citation Format

Share Document