scholarly journals Numerical Investigation of the Hub-Seal Mass Flow Rate Effect on the Axial Turbine Stage Efficiency

2019 ◽  
Vol 213 ◽  
pp. 02080
Author(s):  
Petr Straka

The contribution deals with numerical simulation of compressible flow through the axial turbine stage equipped with the hub-seal. The current flowing from the hub-seal has a major impact on the secondary flow in the hub-region of the blade span. The aim of this work is to found a dependency of the efficiency-drop on the hub-seal mass flow rate. Numerical simulation has been made for configuration of experimental axial single-stage reaction turbine.

2019 ◽  
Author(s):  
Dhruv Suri

Numerical simulation using commercial CFD package ANSYS Fluent ® is carried out for a horizontal axis wind turbine with a flanged diffuser. An optimized inlet shape that further accelerates the flow through the diffuser has been proposed and evaluated. The principle behind the increase in mass flow rate due to the shape of the inlet shroud has been discussed, with emphasis on the modelling techniques presented. The low static pressure aft of the flange at the exit periphery induces a greater mass flow through the diffuser, thereby resulting in a higher capacity factor of the enclosed wind turbine. A comparison between different inlet shroud configurations has also been presented.


Author(s):  
Jinlan Gou ◽  
Wei Wang ◽  
Can Ma ◽  
Yong Li ◽  
Yuansheng Lin ◽  
...  

Using supercritical carbon dioxide (SCO2) as the working fluid of a closed Brayton cycle gas turbine is widely recognized nowadays, because of its compact layout and high efficiency for modest turbine inlet temperature. It is an attractive option for geothermal, nuclear and solar energy conversion. Compressor is one of the key components for the supercritical carbon dioxide Brayton cycle. With established or developing small power supercritical carbon dioxide test loop, centrifugal compressor with small mass flow rate is mainly investigated and manufactured in the literature; however, nuclear energy conversion contains more power, and axial compressor is preferred to provide SCO2 compression with larger mass flow rate which is less studied in the literature. The performance of the axial supercritical carbon dioxide compressor is investigated in the current work. An axial supercritical carbon dioxide compressor with mass flow rate of 1000kg/s is designed. The thermodynamic region of the carbon dioxide is slightly above the vapor-liquid critical point with inlet total temperature 310K and total pressure 9MPa. Numerical simulation is then conducted to assess this axial compressor with look-up table adopted to handle the nonlinear variation property of supercritical carbon dioxide near the critical point. The results show that the performance of the design point of the designed axial compressor matches the primary target. Small corner separation occurs near the hub, and the flow motion of the tip leakage fluid is similar with the well-studied air compressor. Violent property variation near the critical point creates troubles for convergence near the stall condition, and the stall mechanism predictions are more difficult for the axial supercritical carbon dioxide compressor.


Author(s):  
Rayapati Subbarao ◽  
M. Govardhan

Abstract In a Counter Rotating Turbine (CRT), the stationary nozzle is trailed by two rotors that rotate in the opposite direction to each other. Flow in a CRT stage is multifaceted and more three dimensional, especially, in the gap between nozzle and rotor 1 as well as rotor 1 and rotor 2. By varying this gap between the blade rows, the flow and wake pattern can be changed favorably and may lead to improved performance. Present work analyzes the aspect of change in flow field through the interface, especially the wake pattern and deviation in flow with change in spacing. The components of turbine stage are modeled for different gaps between the components using ANSYS® ICEM CFD 14.0. Normalized flow rates ranging from 0.091 to 0.137 are used. The 15, 30, 50 and 70% of the average axial chords are taken as axial gaps in the present analysis. CFX 14.0 is used for simulation. At nozzle inlet, stagnation pressure boundary condition is used. At the turbine stage or rotor 2 outlet, mass flow rate is specified. Pressure distribution contours at the outlets of the blade rows describe the flow pattern clearly in the interface region. Wake strength at nozzle outlet is more for the lowest gap. At rotor 1 outlet, it is less for x/a = 0.3 and increases with gap. Incidence angles at the inlets of rotors are less for the smaller gaps. Deviation angle at the outlet of rotor 1 is also considered, as rotor 1-rotor 2 interaction is more significant in CRT. Deviation angle at rotor 1 outlet is minimum for this gap. Also, for the intermediate mass flow rate of 0.108, x/a = 0.3 is giving more stage performance. This suggests that at certain axial gap, there is better wake convection and flow outline, when compared to other gap cases. Further, it is identified that for the axial gap of x/a = 0.3 and the mean mass flow rate of 0.108, the performance of CRT is maximum. It is clear that the flow pattern at the interface is changing the incidence and deviation with change in axial gap and flow rate. This study is useful for the gas turbine community to identify the flow rates and gaps at which any CRT stage would perform better.


Author(s):  
Mohammad Reza Shirzadi ◽  
Hossein Saeidi

In this article aerodynamic effects of tip clearance on a heavy duty axial turbine are studied. Three different tip clearances are considered for each rotor. For simplicity, a simple tip profile is assumed and cooling air is not modeled. Aerodynamic behavior of all stages is studied in terms of polytropic efficiency, leakage mass flow, secondary and total losses, penetration length, and total mass flow rate for different pressure ratios. Also three well established correlations of tip clearance loss are compared with CFD results to obtain the best model for performance calculation of such a large-scale turbine. The steady states, viscous and compressible flow governing equations representing the flow field with k-epsilon turbulence model are solved using commercial code ANSYS CFX.12. Useful data are presented to predict the variation of efficiency of each individual rotor, as well as entire turbine, as a function of relative tip gap (k/h). This information may be useable in design and troubleshooting. According to the results, even though pressure drop in rear stages across tip gap is lower than pressure drop in front stages, leakage mass flow rate is considerably high for this LP stages. Consequently, tip clearance losses of rear stages have significant effect on the entire turbine efficiency.


Author(s):  
M Neeharika ◽  
Prabhat Kumar Hensh

Seal design is an essential part for turbo machinery. Seal consisting of fins is placed in a gap between stationary and rotating component to minimize the leakage flow. Seal leakage flow has been considered as an inevitable loss factor that highly affects the efficiency of any machine. During operation of the equipment, thermal expansion/contraction of components take place, which causes variation of the gap between stationary and rotating component. Importance of the study is to understand the flow behavior due to variation of the gap. The variation of gap leads to change of radial clearance between fin to metal component and subsequent change of flow pattern. The main focus of the paper is to estimate the leakage flow through a labyrinth seal placed between rotor and casing of a typical steam turbine. Numerical techniques using 3D CFD tool are used for this purpose. Three different seal configurations are proposed in the study. The variables of the three seal configurations are radial clearance, number of fins in the flow passage and pressure drop across the seal passages. As an alternative methodology, an empirical correlation is formulated based on numerical simulation results for one set of radial clearance to estimate mass flow rate through the seal. In order to validate the formulated correlation, mass flow rate is determined for another set of radial clearance and compared with numerical simulation results. It is observed that flow rate estimated from 3D CFD study is around 20% lower compared to empirical correlation.


2012 ◽  
Vol 271-272 ◽  
pp. 1049-1055
Author(s):  
Jing Wei ◽  
Xin Long Liang ◽  
Wei Sun ◽  
Li Cun Wang

The numerical simulation for dynamic characteristics of the flow field of a novel twin-screw kneader is carried out. The flow field model of the twin-screw kneader is established, and the three-dimensional, isothermal and steady numerical analysis of non-Newtonian fluid is presented based on computational fluid dynamics (CFD) theory, and the characteristics under the conditions of different speeds and center distances such as the distribution of pressure and velocity field, the maximum shear stress, the mass flow rate and so on, are studied. The research results show that: with increasing speed, the maximum flow pressure, the mass flow rate, the maximum shear stress will increase; the maximum shear stress increases first and then decreases with increasing of center distance of the screw rotors, while the mass flow rate increases with increasing of center distance; but when the center distance reaches a certain degree, the mass flow rate will be negative and the material will appear serious reflux which can lead the kneader to stopping working.


Author(s):  
Mingmin Zhu ◽  
Xiaoqing Qiang ◽  
Wensheng Yu ◽  
Jinfang Teng

The purpose of this work is to understand the properties of the injection flow through slots opening surfaces with steady and unsteady simulations. The feasibility of evaluating slot effectiveness by steady results is demonstrated. Transient features of injection flow are detailed investigated. Numerical investigations are carried out in a 1.5 axial transonic compressor stage at a specified rotating speed with seven kinds of slot-type casing treatments. Comparisons between steady/unsteady results show that differences of overall performance and injection mass flow rate are dependent on simulation methods, rather than slot configurations. Thus, correlation analysis by steady results of seven slot configurations is considered valid and reveals strong linear correlation between injection mass flow and stall margin improvements/efficiency drops. Therefore, it is practical to evaluate the effectiveness of a specific slot configuration in this compressor with steady results by calculating injection mass flow rate. Afterwards, unsteady simulations are performed with a specific configuration of arc-curve skewed slots. It is clarified that the dividing locations between suction/injection regions moves along the axial direction based on the relative rotor/slots location. Exchanging flow through slots opening surfaces displays periodic variations over time. The variation cycle for one single slot equals blade passing period T. For summation of mass flow through all slots, the cycle equals to T divided by slots number in one passage. The net flow rate through all opening surfaces is always less than zero during a blading passing period, i.e. injection mass flow rate is larger than suction flow all the time.


Author(s):  
M. Chilla ◽  
H. P. Hodson ◽  
G. Pullan ◽  
D. Newman

In high-pressure turbines, compressor air is used to purge the disc space in an effort to protect the blade roots and the turbine disc from overheating and failure. The purge air exits the disc space through a rim seal at the hub of the main annulus and is subsequently entrained in the rotor hub endwall flows. The introduction of the purge air into the turbine main stream causes additional losses and therefore reduced turbine efficiency. For a given rim sealing mass flow rate, the rim seal geometry has to be designed in a way that reduces the detrimental impact of the sealing flow on turbine performance. In this study, the rim seal of a generic high-pressure turbine, representative of modern large civil aero-engines, is redesigned under consideration of the pressure field upstream of the rotor. Unsteady numerical simulations of the turbine stage are used to compare the aerodynamic impact of three different rim seal designs. The numerical simulations predict an increase in the time-averaged turbine stage efficiency of over 0.2% for the stage configuration with the final redesigned rim seal compared to the configuration with the original baseline rim seal geometry at the nominal sealing mass flow rate.


Sign in / Sign up

Export Citation Format

Share Document