Analysis on slot-type casing treatment injection flow in an axial transonic compressor

Author(s):  
Mingmin Zhu ◽  
Xiaoqing Qiang ◽  
Wensheng Yu ◽  
Jinfang Teng

The purpose of this work is to understand the properties of the injection flow through slots opening surfaces with steady and unsteady simulations. The feasibility of evaluating slot effectiveness by steady results is demonstrated. Transient features of injection flow are detailed investigated. Numerical investigations are carried out in a 1.5 axial transonic compressor stage at a specified rotating speed with seven kinds of slot-type casing treatments. Comparisons between steady/unsteady results show that differences of overall performance and injection mass flow rate are dependent on simulation methods, rather than slot configurations. Thus, correlation analysis by steady results of seven slot configurations is considered valid and reveals strong linear correlation between injection mass flow and stall margin improvements/efficiency drops. Therefore, it is practical to evaluate the effectiveness of a specific slot configuration in this compressor with steady results by calculating injection mass flow rate. Afterwards, unsteady simulations are performed with a specific configuration of arc-curve skewed slots. It is clarified that the dividing locations between suction/injection regions moves along the axial direction based on the relative rotor/slots location. Exchanging flow through slots opening surfaces displays periodic variations over time. The variation cycle for one single slot equals blade passing period T. For summation of mass flow through all slots, the cycle equals to T divided by slots number in one passage. The net flow rate through all opening surfaces is always less than zero during a blading passing period, i.e. injection mass flow rate is larger than suction flow all the time.

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Dakun Sun ◽  
Chaoqun Nie ◽  
Xiaohua Liu ◽  
Feng Lin ◽  
Xiaofeng Sun

A kind of casing treatment, named as stall precursor-suppressed (SPS), has been developed recently, which was proved to be able to effectively improve stall margin (SM) without significant efficiency loss in low-speed axial flow compressors and a transonic compressor rotor. In this paper, the effectiveness of the SPS casing treatment is investigated in a single-stage transonic compressor. Based on an extended stall inception model, the quantitative evaluation of the SM enhancement by the SPS casing treatment is presented for the transonic compressor stage. The model predicts that a 2.5–6.8% of stall margin improvement (SMI), which is defined in terms of mass flow rate at stall inception, can be achieved at the design rotational speed. The experimental results show that the SPS casing treatment can achieve 3.5–9.3% of the SMI at 95% design rotational speed. Due to the fact that the distributions of the total pressure ratio along the spanwise direction are kept the same as those of the solid wall casing at the same mass flow rate, the SPS casing treatments with a small open area ratio and large backchamber enhance the SM without a recognizable efficiency loss and a migration of the pressure-rise characteristics. Furthermore, the mechanism of SMI with the SPS casing treatment is investigated in the experiments. In comparison with the solid wall casing, the emergence and the evolution of the stall inception waves are suppressed and the nonlinear development of the stall process is delayed with the SPS casing treatment.


Author(s):  
Byeung Jun Lim ◽  
Tae Choon Park ◽  
Young Seok Kang

In this study, characteristics of stall inception in a single-stage transonic axial compressor with circumferential grooves casing treatment were investigated experimentally. Additionally, the characteristic of increasing irregularity in the pressure inside circumferential grooves as the compressor approaches the stall limit was applied to the stall warning method. Spike-type rotating stall was observed in the single-stage transonic axial compressor with smooth casing. When circumferential grooves were applied, the stall inception was suppressed and the operating point of the compressor moved to lower flow rate than the stall limit. A spike-like disturbance was developed into a rotating stall cell and then the Helmholtz perturbation was overlapped on it at N = 80%. At N = 70 %, the Helmholtz perturbation was observed first and the amplitude of the wave gradually increased as mass flow rate decreased. At N = 60%, spike type stall inceptions were observed intermittently and then developed into continuous rotating stall at lower mass flow rate. Pressure measured at the bottom of circumferential grooves showed that the level of irregularity of pressure increased as flow rate decreased. Based on the characteristic of increasing irregularity of the pressure signals inside the circumferential grooves as stall approaches, an autocorrelation technique was applied to the stall warning. This technique could be used to provide warning against stall and estimate real-time stall margins in compressors with casing treatments.


Author(s):  
Dominik Schlüter ◽  
Robert P. Grewe ◽  
Fabian Wartzek ◽  
Alexander Liefke ◽  
Jan Werner ◽  
...  

Abstract Rotating stall is a non-axisymmetric disturbance in axial compressors arising at operating conditions beyond the stability limit of a stage. Although well-known, its driving mechanisms determining the number of stall cells and their rotational speed are still marginally understood. Numerical studies applying full-wheel 3D unsteady RANS calculations require weeks per operating point. This paper quantifies the capability of a more feasible quasi-2D approach to reproduce 3D rotating stall and related sensitivities. The first part of the paper deals with the validation of a numerical baseline the simplified model is compared to in detail. Therefore, 3D computations of a state-of-the-art transonic compressor are conducted. At steady conditions the single-passage RANS CFD matches the experimental results within an error of 1% in total pressure ratio and mass flow rate. At stalled conditions, the full-wheel URANS computation shows the same spiketype disturbance as the experiment. However, the CFD underpredicts the stalling point by approximately 7% in mass flow rate. In deep stall, the computational model correctly forecasts a single-cell rotating stall. The stall cell differs by approximately 21% in rotational speed and 18% in circumferential size from the experimental findings. As the 3D model reflects the compressor behaviour sufficiently accurate, it is considered valid for physical investigations. In the second part of the paper, the validated baseline is reduced in radial direction to a quasi-2D domain only resembling the compressor tip area. Four model variations regarding span-wise location and extent are numerically investigated. As the most promising model matches the 3D flow conditions in the rotor tip region, it correctly yields a single-cell rotating stall. The cell differs by only 7% in circumferential size from the 3D results. Due to the impeded radial migration in the quasi-2D slice, however, the cell exhibits an increased axial extent. It is assumed, that the axial expansion into the adjacent rows causes the difference in cell speed by approximately 24%. Further validation of the reduced model against experimental findings reveals, that it correctly reflects the sensitivity of circumferential cell size to flow coefficient and individual cell speed to compressor shaft speed. As the approach reduced the wall clock time by 92%, it can be used to increase the physical understanding of rotating stall at much lower costs.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Guoming Zhu ◽  
Bo Yang

Abstract A multi-objective optimization of a coupled casing treatment (CCT) for an axial transonic compressor is performed in this study. The coupled casing treatment is the basis axial slots with a circumferential groove located at various positions along the slots. During the optimization stage, five important parameters to control the geometry are used as the optimal variables. The stall margin and the peak efficiency are selected as the optimal objectives. Non-dominated sorting genetic algorithm II coupled with radial basis function (RBF) approximation is used to search for Pareto-optimal solutions. Then, four optimal configurations are selected from Pareto-front for further analysis. As shown in the simulation results with and without the coupled casing treatments, the leakage flow is reenergized and the blocking region near the blade leading edge at rotor tip is decreased by the use of these structures under the low flowrate condition, which is the main reason for stability enhancement. Besides, a coupled casing treatment with the groove settled near the end of the basis slots have the potential to generate more injection flow and extend the operating range of compressor further.


2019 ◽  
Vol 213 ◽  
pp. 02080
Author(s):  
Petr Straka

The contribution deals with numerical simulation of compressible flow through the axial turbine stage equipped with the hub-seal. The current flowing from the hub-seal has a major impact on the secondary flow in the hub-region of the blade span. The aim of this work is to found a dependency of the efficiency-drop on the hub-seal mass flow rate. Numerical simulation has been made for configuration of experimental axial single-stage reaction turbine.


2003 ◽  
Vol 125 (2) ◽  
pp. 328-335 ◽  
Author(s):  
Steven E. Gorrell ◽  
Theodore H. Okiishi ◽  
William W. Copenhaver

Usually less axial spacing between the blade rows of an axial flow compressor is associated with improved efficiency. However, mass flow rate, pressure ratio, and efficiency all decreased as the axial spacing between the stator and rotor was reduced in a transonic compressor rig. Reductions as great as 3.3% in pressure ratio, and 1.3 points of efficiency were observed as axial spacing between the blade rows was decreased from far apart to close together. The number of blades in the stator blade-row also affected stage performance. Higher stator blade-row solidity led to larger changes in pressure ratio efficiency, and mass flow rate with axial spacing variation. Analysis of the experimental data suggests that the drop in performance is a result of increased loss production due to blade-row interactions. Losses in addition to mixing loss are present when the blade-rows are spaced closer together. The extra losses are associated with the upstream stator wakes and are most significant in the midspan region of the flow.


2021 ◽  
Vol 249 ◽  
pp. 03027
Author(s):  
A. Medina ◽  
D.A. Serrano ◽  
A. López-Villa ◽  
M. Pliego

Currently, very little is known about reliable phenomelogical correlations to estimate the gravity-driven mass flow rate, of dry non-cohesive granular material, outflowing from thin thickness slots in vertical sidewalls of rectangular silos. Here, we validate a simple and general formula that fits pretty well data published elsewhere, including the cases of vertically and horizontally elongated slots.


2019 ◽  
Author(s):  
Dhruv Suri

Numerical simulation using commercial CFD package ANSYS Fluent ® is carried out for a horizontal axis wind turbine with a flanged diffuser. An optimized inlet shape that further accelerates the flow through the diffuser has been proposed and evaluated. The principle behind the increase in mass flow rate due to the shape of the inlet shroud has been discussed, with emphasis on the modelling techniques presented. The low static pressure aft of the flange at the exit periphery induces a greater mass flow through the diffuser, thereby resulting in a higher capacity factor of the enclosed wind turbine. A comparison between different inlet shroud configurations has also been presented.


Author(s):  
Bastian Schmandt ◽  
Heinz Herwig

Losses due to the flow through conduit components in a pipe system can be characterised by head loss coefficients. They basically account for the dissipation in the flow field or, in a more general sense, for the entropy generation due to the conduit component under consideration. When only one single mass flow rate is involved, an entropy based approach is straight forward and ṁ can be used as a general reference quantity. If, however, the mass flow rate is split or united like in junctions, some new aspects appear. In our study the general approach for these kind of conduit components is discussed. Like for single mass flow rates losses are accounted for by determining the entropy generation rates. New aspects for the branched flows are an additional parameter, the splitting ratio, and the fact that there is an energy transfer between the single branches that has to be accounted for appropriately. It turns out that this energy transfer changes the total head in each flow brach in addition to a sole loss of total head. Therefore, the coefficients should be named head change coefficients when this effect occurs. As an example the flow through a T-shaped junction is considered, for which head loss coefficients are determined for both branches and discussed with respect to their physical meaning.


Sign in / Sign up

Export Citation Format

Share Document