scholarly journals Determination of cosmic-ray primary mass on an event-by-event basis using radio detection

2019 ◽  
Vol 216 ◽  
pp. 02005
Author(s):  
Washington Carvalho ◽  
Jaime Alvarez-Muñiz

Traditionally, the depth of maximum shower development Xmax has been used as a surrogate observable for composition. Here we present the possibility of a new methodology to discriminate between light and heavy cosmic-ray primaries on an event-by-event basis. This method is based on comparisons between detected radio signals and Monte Carlo simulations, but instead of first reconstructing Xmax, we try to infer the cosmic-ray composition directly. We show that a large discrimination efficiency could in principle be reached for zenith angles above θ≃65°, even when some of the typical uncertainties in radio detection are taken into account.

2006 ◽  
Vol 21 (supp01) ◽  
pp. 65-69 ◽  
Author(s):  
R. Engel ◽  
N. N. Kalmykov ◽  
A. A. Konstantinov

Cherenkov and geosynchrotron radiation are considered as two fundamental mechanisms of the radio emission generated by extensive air showers (EAS). The code EGSnrc is used for Monte-Carlo simulations of the individual shower development. Calculations of the radial dependence and frequency spectrum of the emitted radiation are performed for the LOPES experiment frequency range.


1970 ◽  
Vol 25 (8-9) ◽  
pp. 1254-1258
Author(s):  
K. O. Thielheim

Abstract Results of Monte Carlo Simulations of Extensive Air Shower Development are discussed with respect to the influence of primary mass on shower characteristics (energy spectrum and lateral distribution of hadrons, frequency of nuclear active "multicores", mean total energy of hadrons, fluctuation of total hadron energy, mean total number of myons, fluctuation of total myon number, mean central electron density, frequency of electromagnetic "multicores"). Critical comments are presented concerning some empirical data.


MRS Advances ◽  
2017 ◽  
Vol 2 (48) ◽  
pp. 2627-2632 ◽  
Author(s):  
Poppy Siddiqua ◽  
Michael S. Shur ◽  
Stephen K. O’Leary

ABSTRACTWe examine how stress has the potential to shape the character of the electron transport that occurs within ZnO. In order to narrow the scope of this analysis, we focus on a determination of the velocity-field characteristics associated with bulk wurtzite ZnO. Monte Carlo simulations of the electron transport are pursued for the purposes of this analysis. Rather than focusing on the impact of stress in of itself, instead we focus on the changes that occur to the energy gap through the application of stress, i.e., energy gap variations provide a proxy for the amount of stress. Our results demonstrate that stress plays a significant role in shaping the form of the velocity-field characteristics associated with ZnO. This dependence could potentially be exploited for device application purposes.


2018 ◽  
Vol 175 ◽  
pp. 07028 ◽  
Author(s):  
Alessandro Nada ◽  
Michele Caselle ◽  
Marco Panero

Jarzynski’s equality provides an elegant and powerful tool to directly compute differences in free energy in Monte Carlo simulations and it can be readily extended to lattice gauge theories to compute a large set of physically interesting observables. In this talk we present a novel technique to determine the thermodynamics of stronglyinteracting matter based on this relation, which allows for a direct and efficient determination of the pressure using out-of-equilibrium Monte Carlo simulations on the lattice. We present results for the equation of state of the SU(3) Yang-Mills theory in the confined and deconfined phases. Finally, we briefly discuss the generalization of this method for theories with fermions, with particular focus on the equation of state of QCD.


Sign in / Sign up

Export Citation Format

Share Document