scholarly journals Reconstruction for Liquid Argon TPC Neutrino Detectors Using Parallel Architectures

2020 ◽  
Vol 245 ◽  
pp. 02012
Author(s):  
Sophie Berkman ◽  
Giuseppe Cerati ◽  
Brian Gravelle ◽  
Boyana Norris ◽  
Allison Reinsvold Hall ◽  
...  

Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming more difficult as the detectors increase in size to reach their physics goals. In liquid argon time projection chambers (TPCs) the charged particles from neutrino interactions produce ionization electrons which drift in an electric field towards a series of collection wires, and the signal on the wires is used to reconstruct the interaction. The MicroBooNE detector currently collecting data at Fermilab has 8000 wires, and planned future experiments like DUNE will have 100 times more, which means that the time required to reconstruct an event will scale accordingly. Modernization of liquid argon TPC reconstruction code, including vectorization, parallelization and code portability to GPUs, will help to mitigate these challenges. The liquid argon TPC hit finding algorithm within the LArSoft framework used across multiple experiments has been vectorized and parallelized. This increases the speed of the algorithm on the order of ten times within a standalone version on Intel architectures. This new version has been incorporated back into LArSoft so that it can be generally used. These methods will also be applied to other low-level reconstruction algorithms of the wire signals such as the deconvolution. The applications and performance of this modernized liquid argon TPC wire reconstruction will be presented.

Instruments ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 31
Author(s):  
Corey Adams ◽  
Marco del Tutto

The amount and complexity of data recorded by high energy physics experiments are rapidly growing, and with these grow the difficulties in visualizing such data. To study the physics of neutrinos, a type of elementary particle, scientists use liquid argon time projection chamber (LArTPC) detectors, among other technologies. LArTPCs have a very high spatial resolution and resolve many of the elementary particles that come out of a neutrino interacting within the argon in the detector. Visualizing these neutrino interactions is of fundamental importance to understanding the properties of neutrinos, but also monitoring and checking on the detector conditions and operations. From these ideas, we have developed TITUS, an event display that shows images recorded by these neutrino detectors. TITUS is a piece of software that reads data coming from LArTPC detectors (as well as the corresponding simulation) and allows users to explore such data in multiple ways. TITUS is flexible to enable fast prototyping and customization.


2020 ◽  
pp. 171-254
Author(s):  
Hermann Kolanoski ◽  
Norbert Wermes

Detectors that record charged particles through their ionisation of gases are found in many experiments of nuclear and particle physics. By conversion of the charges created along a track into electrical signals, particle trajectories can be measured with these detectors in large volumes, also inside magnetic fields. The operation principles of gaseous detectors are explained, which include charge generation, gas amplification, operation modes and gas mixtures. Different detector types are described in some detail, starting with ionisation chambers without gas amplification, proceeding to those with gas amplification like spark and streamer chambers, parallel plate arrangements, multi-wire proportional chambers, chambers with microstructured electrodes, drift chambers, and ending with time-projection chambers. The chapter closes with an overview of aging effects in gaseous detectors which cause negative alterations of the detector performance.


Instruments ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Jonathan Asaadi ◽  
Martin Auger ◽  
Antonio Ereditato ◽  
Damian Goeldi ◽  
Umut Kose ◽  
...  

Traditional charge readout technologies of single-phase Liquid Argon Time projection Chambers (LArTPCs) based on projective wire readout introduce intrinsic ambiguities in event reconstruction. Combined with the slow response inherent in LArTPC detectors, reconstruction ambiguities have limited their performance, until now. Here, we present a proof of principle of a pixelated charge readout that enables the full 3D tracking capabilities of LArTPCs. We characterize the signal-to-noise ratio of charge readout chain to be about 14, and demonstrate track reconstruction on 3D space points produced by the pixel readout. This pixelated charge readout makes LArTPCs a viable option for high-multiplicity environments.


2019 ◽  
Vol 99 (1) ◽  
Author(s):  
R. Acciarri ◽  
C. Adams ◽  
J. Asaadi ◽  
B. Baller ◽  
T. Bolton ◽  
...  

2018 ◽  
Vol 1143 ◽  
pp. 012003
Author(s):  
H da Motta ◽  
A A Machado ◽  
L Paulucci ◽  
E Segreto ◽  
A Fauth ◽  
...  

2020 ◽  
Vol 102 (9) ◽  
Author(s):  
W. Castiglioni ◽  
W. Foreman ◽  
B. R. Littlejohn ◽  
M. Malaker ◽  
I. Lepetic ◽  
...  

2021 ◽  
Vol 251 ◽  
pp. 03054 ◽  
Author(s):  
Jeremy Hewes ◽  
Adam Aurisano ◽  
Giuseppe Cerati ◽  
Jim Kowalkowski ◽  
Claire Lee ◽  
...  

This paper presents a graph neural network (GNN) technique for low-level reconstruction of neutrino interactions in a Liquid Argon Time Projection Chamber (LArTPC). GNNs are still a relatively novel technique, and have shown great promise for similar reconstruction tasks in the LHC. In this paper, a multihead attention message passing network is used to classify the relationship between detector hits by labelling graph edges, determining whether hits were produced by the same underlying particle, and if so, the particle type. The trained model is 84% accurate overall, and performs best on the EM shower and muon track classes. The model’s strengths and weaknesses are discussed, and plans for developing this technique further are summarised.


2020 ◽  
Vol 15 (03) ◽  
pp. C03057-C03057
Author(s):  
L. Romero ◽  
J.M. Cela ◽  
E. Sanchez Garcia ◽  
M. Daniel ◽  
M. de Prado

2013 ◽  
Vol 53 (A) ◽  
pp. 776-781
Author(s):  
Christian Farnese

Liquid Argon Time Projection Chambers are very promising detectors for neutrino and astroparticle physics due to their high granularity, good energy resolution and 3D imaging, allowing for a precise event reconstruction. ICARUS T600 is the largest liquid Argon (LAr) TPC detector ever built (~600 ton LAr mass) and is presently operating underground at the LNGS laboratory. This detector, internationally considered as the milestone towards the realization of the next generation of massive detectors (~tens of ktons) for neutrino and rare event physics, has been smoothly running since summer 2010, collecting data with the CNGS beam and with cosmics. The status of this detector will be shortly described together with the intent to adopt the LAr TPC technology at CERN as a possible solution to the sterile neutrino puzzle.


Sign in / Sign up

Export Citation Format

Share Document