good energy resolution
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 6 (4) ◽  
pp. 47
Author(s):  
Marco Miliucci ◽  
Massimiliano Bazzi ◽  
Damir Bosnar ◽  
Mario Bragadireanu ◽  
Marco Carminati ◽  
...  

A large-area silicon drift detectors (SDDs) system has been developed by the SIDDHARTA-2 collaboration for high precision light kaonic atom X-ray spectroscopy at the DAΦNE collider of Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati. The SDDs’ geometry and electric field configuration, combined with their read-out electronics, make these devices suitable for performing high precision light kaonic atom spectroscopy measurements in the background of the DAΦNE collider. This work presents the spectroscopic response of the SDDs system during the first exotic atoms run of SIDDHARTA-2 with kaonic helium, a preliminary to the kaonic deuterium data taking campaign. The SIDDHARTA-2 spectroscopic system has good energy resolution and a 2 μs timing window which rejects the asynchronous events, scaling the background by a factor of 10−5. The results obtained for the first exotic atoms run of SIDDHARTA-2 prove this system to be ready to perform the challenging kaonic deuterium measurement.


2020 ◽  
Vol 901 ◽  
pp. 89-94
Author(s):  
Akapong Phunpueok ◽  
Voranuch Thongpool ◽  
Sarawut Jaiyen ◽  
Hua Shu Hsu

Nowadays, radioactive materials are being applied in medical imaging. Because humans cannot observe radiation, radiation detection materials are very important to humans. A scintillator is a material that can change gamma photons to visible photons. Good scintillators should have the following properties: high scintillation light yield, good energy resolution, and high density. In this work, the scintillation light yield property of CWO crystals was studied due to its interesting properties, such as high stopping power and low hygroscopicity. CWO crystals were compared with BGO crystals. From the results, it was found that the BGO crystals showed higher scintillation light yield value at 662 keV energy from 137Cs radioactive source than the CWO crystals, resulting in better energy resolution value. The intrinsic light yield and loss parameters for both crystals are also presented in this work.


2019 ◽  
Vol 4 (1) ◽  
pp. 31 ◽  
Author(s):  
Marco Miliucci ◽  
Mihail Iliescu ◽  
Aidin Amirkhani ◽  
Massimiliano Bazzi ◽  
Catalina Curceanu ◽  
...  

Novel, large-area silicon drift detectors (SDDs) have been developed to perform precision measurements of kaonic atom X-ray spectroscopy, for the study the K ¯ N strong interaction in the low-energy regime. These devices have special geometries, field configurations and read-out electronics, resulting in excellent performances in terms of linearity, stability and energy resolution. In this work the SDDs energy response in the energy region between 4000 eV and 12,000 eV is reported, revealing a stable linear response within 1 eV and good energy resolution.


2018 ◽  
Vol 46 ◽  
pp. 1860075
Author(s):  
L. Mastrolorenzo

The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS Collaboration is designing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (CE-E) and hadronic (CE-H) compartments. This will facilitate particle-flow (PF) calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The CE-E and a large fraction of CE-H will be based on hexagonal silicon sensors of [Formula: see text] cell size, with the remainder of the CE-H based on highly-segmented scintillators with SiPM readout. The intrinsic high-precision timing capabilities of the silicon sensors will add an extra dimension to event reconstruction, especially in terms of pileup rejection. An overview of the HGCAL project is presented in this paper.


2016 ◽  
Vol 872 ◽  
pp. 266-270
Author(s):  
Pruittipol Limkitjaroenporn ◽  
Narong Sangwaranatee ◽  
Wuttichai Chaiphaksa ◽  
Jakrapong Kaewkhao

This article, for comparison, the non-proportionality of light yield and energy resolution of BGO, LYSO and CsI(Tl) scintillators couple to the R1306 PMT readouts were investigated. At 662 keV from 137Cs source, the good energy resolution of 7.13% for CsI(Tl) superior than LYSO and BGO scintillators. The energy resolution on gamma-ray energy was also evaluated to expose the scintillator intrinsic resolution parameters. For non-proportionality of light yield, the study showed a light yield non-proportionality 0.35% of LYSO, the value is better than 4.82 % for CsI(Tl) and 1.53 % of BGO scintillators.


MRS Advances ◽  
2016 ◽  
Vol 1 (2) ◽  
pp. 121-126 ◽  
Author(s):  
A. M. Colosimo ◽  
Jianfeng Ji ◽  
P. S. Stepanov ◽  
L. A. Boatner ◽  
F. A. Selim

ABSTRACTScintillation properties are often studied by photo-luminescence (PL) and scintillation measurements. In this work, we combine X-ray-induced luminescence (XRIL) spectroscopy [Review of Scientific Instruments 83, 103112 (2012)] with PL and standard scintillation measurements to give insight into the scintillation properties of un-doped ZnO single crystals. XRIL revealed that ZnO luminescence proportionally increases with X-ray power and exhibits excellent linearity - indicating the possibility of developing radiation detectors with good energy resolution. By coupling ZnO crystals to fast photomultiplier tubes and monitoring the anode signal, rise times as fast as 0.9 ns were measured.


2015 ◽  
Vol 109 (6) ◽  
pp. 601-605 ◽  
Author(s):  
Roy Pöllänen ◽  
Jani Turunen ◽  
Tero Karhunen ◽  
Kari Peräjärvi ◽  
Teemu Siiskonen ◽  
...  

2015 ◽  
Vol 804 ◽  
pp. 93-96
Author(s):  
Akapong Phunpueok ◽  
Voranuch Thongpool ◽  
Weerapong Chewpraditkul

In the present day, inorganic scintillating crystals become a main part in detection and spectroscopy of nuclear particles and high energy photons, more spectively in X/g-ray imaging. The good properties for the scintillating crystals used in these applications require high photon yield, high stopping power, good energy resolution, good light yield proportionality, and minimal afterglow. The main useful of Ce-doped Lu0.7Y0.3AlO3 (LuYAP(Ce)) are high stopping power and non-hygroscopic which are expected to be key ingredients for medical imaging. In this work, we studied the light yield non-proportionality and energy resolution of LuYAP(Ce) crystal with the energy range from 31 to 1,274.5 keV using photomultiplier tube (PMT) readout. The intrinsic resolution of the LuYAP(Ce) crystal has been determined after correcting the measured PMT resolution. The results showed that the non-proportional response of the crystals was strongly correlated with the intrinsic resolution of the crystals.


2014 ◽  
Vol 29 (19) ◽  
pp. 1443009 ◽  
Author(s):  
D. G. Cerdeño ◽  
C. Marcos ◽  
M. Peiró ◽  
M. Fornasa ◽  
C. Cuesta ◽  
...  

In the last decade direct detection Dark Matter (DM) experiments have increased enormously their sensitivity and ton-scale setups have been proposed, especially using germanium and xenon targets with double readout and background discrimination capabilities. In light of this situation, we study the prospects for determining the parameters of Weakly Interacting Massive Particle (WIMP) DM (mass, spin-dependent (SD) and spin-independent (SI) cross-section off nucleons) by combining the results of such experiments in the case of a hypothetical detection. In general, the degeneracy between the SD and SI components of the scattering cross-section can only be removed using targets with different sensitivities to these components. Scintillating bolometers, with particle discrimination capability, very good energy resolution and threshold and a wide choice of target materials, are an excellent tool for a multitarget complementary DM search. We investigate how the simultaneous use of scintillating targets with different SD-SI sensitivities and/or light isotopes (as the case of CaF 2 and NaI ) significantly improves the determination of the WIMP parameters. In order to make the analysis more realistic we include the effect of uncertainties in the halo model and in the spin-dependent nuclear structure functions, as well as the effect of a thermal quenching different from 1.


2013 ◽  
Vol 53 (A) ◽  
pp. 776-781
Author(s):  
Christian Farnese

Liquid Argon Time Projection Chambers are very promising detectors for neutrino and astroparticle physics due to their high granularity, good energy resolution and 3D imaging, allowing for a precise event reconstruction. ICARUS T600 is the largest liquid Argon (LAr) TPC detector ever built (~600 ton LAr mass) and is presently operating underground at the LNGS laboratory. This detector, internationally considered as the milestone towards the realization of the next generation of massive detectors (~tens of ktons) for neutrino and rare event physics, has been smoothly running since summer 2010, collecting data with the CNGS beam and with cosmics. The status of this detector will be shortly described together with the intent to adopt the LAr TPC technology at CERN as a possible solution to the sterile neutrino puzzle.


Sign in / Sign up

Export Citation Format

Share Document