scholarly journals ML Track Fitting in Nuclear Physics

2020 ◽  
Vol 245 ◽  
pp. 06015
Author(s):  
Thomas Britton ◽  
David Lawrence ◽  
Gagik Gavalian

Charged particle tracking represents the largest consumer of CPU resources in high data volume Nuclear Physics (NP) experiments. An effort is underway to develop machine learning (ML) networks that will reduce the resources required for charged particle tracking. Tracking in NP experiments represent some unique challenges compared to high energy physics (HEP). In particular, track finding typically represents only a small fraction of the overall tracking problem in NP. This presentation will outline the differences and similarities between NP and HEP charged particle tracking and areas where ML learning may provide a benefit. The status of the specific effort taking place at Jefferson Lab will also be shown.

2005 ◽  
Vol 20 (16) ◽  
pp. 3777-3782 ◽  
Author(s):  
IVAN VITEV

The status of RHIC theory and phenomenology is reviewed with an emphasis on the indications for the creation of a new deconfined state of matter. The critical role of high energy nuclear physics in the development of theoretical tools that address various aspects of the QCD many body dynamics is highlighted. The perspectives for studying nuclear matter under even more extreme conditions at the LHC and the overlap with high energy physics is discussed.


Author(s):  
Sabrina Amrouche ◽  
Tobias Golling ◽  
Moritz Kiehn ◽  
Claudia Plant ◽  
Andreas Salzburger

2018 ◽  
Vol 182 ◽  
pp. 02063 ◽  
Author(s):  
Vladimir Kekelidze ◽  
Alexander Kovalenko ◽  
Richard Lednicky ◽  
Victor Matveev ◽  
Igor Meshkov ◽  
...  

The NICA (Nuclotron-based Ion Collider fAcility) is the new international research facility under construction at the Joint Institute for Nuclear Research (JINR) in Dubna. The main targets of the facility are the following: 1) study of hot and dense baryonic matter at the energy range of the maximum baryonic density; 2) investigation of nucleon spin structure and polarization phenomena; 3) development of JINR accelerator facility for high energy physics research based on the new collider of relativistic ions from protons to gold and polarized protons and deuterons as well with the maximum collision energy of sqrt(sNN) ~11GeV (Au79+ +Au79+) and ~ 27 GeV (p+p). Two collider detector setups MPD and SPD are foreseen. The setup BM@N (Baryonic Matter at Nuclotron) is commissioned for data taken at the existing Nuclotron beam fixed target area. The MPD construction is in progress whereas the SPD is still at the beginning design stage. An average luminosity of the collider is expected at the level of 1027 cm-2 s-1 for Au (79+) and 1032 cm-2 s-1 for polarized protons at 27 GeV. The status of NICA design and construction work is briefly described below.


2019 ◽  
Vol 214 ◽  
pp. 08009 ◽  
Author(s):  
Matthias J. Schnepf ◽  
R. Florian von Cube ◽  
Max Fischer ◽  
Manuel Giffels ◽  
Christoph Heidecker ◽  
...  

Demand for computing resources in high energy physics (HEP) shows a highly dynamic behavior, while the provided resources by the Worldwide LHC Computing Grid (WLCG) remains static. It has become evident that opportunistic resources such as High Performance Computing (HPC) centers and commercial clouds are well suited to cover peak loads. However, the utilization of these resources gives rise to new levels of complexity, e.g. resources need to be managed highly dynamically and HEP applications require a very specific software environment usually not provided at opportunistic resources. Furthermore, aspects to consider are limitations in network bandwidth causing I/O-intensive workflows to run inefficiently. The key component to dynamically run HEP applications on opportunistic resources is the utilization of modern container and virtualization technologies. Based on these technologies, the Karlsruhe Institute of Technology (KIT) has developed ROCED, a resource manager to dynamically integrate and manage a variety of opportunistic resources. In combination with ROCED, HTCondor batch system acts as a powerful single entry point to all available computing resources, leading to a seamless and transparent integration of opportunistic resources into HEP computing. KIT is currently improving the resource management and job scheduling by focusing on I/O requirements of individual workflows, available network bandwidth as well as scalability. For these reasons, we are currently developing a new resource manager, called TARDIS. In this paper, we give an overview of the utilized technologies, the dynamic management, and integration of resources as well as the status of the I/O-based resource and job scheduling.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-5
Author(s):  
Editorial team

Eurasian Journal of Physics and Functional Materials is an international journal published 4 numbers per year starting from October 2017. The aim of the journal is rapid publication of original articles and rewiews in the following areas: nuclear physics, high energy physics, radiation ecology, alternative energy (nuclear and hydrogen, photovoltaic, new energy sources, energy efficiency and energy saving, the energy sector impact on the environment), functional materials and related problems of high technologies.


2018 ◽  
Vol 191 ◽  
pp. 01003 ◽  
Author(s):  
Alexander Kovalenko ◽  
Vladimir Kekelidze ◽  
Richard Lednicky ◽  
Viktor Matveev ◽  
Igor Meshkov ◽  
...  

The NICA (Nuclotron-based Ion Collider fAcility) is the new international research facility under construction at the Joint Institute for Nuclear Research (JINR) in Dubna. The main targets of the facility are the following: 1) study of hot and dense baryonic matter at the energy range of the maximum baryonic density; 2) investigation of nucleon spin structure and polarization phenomena; 3) development of JINR accelerator facility for high energy physics research based on the new collider of relativistic ions from protons to gold and polarized protons and deuterons as well with the maximum collision energy of √SNN ~11GeV (Au79+ +Au79+) and ~ 27 GeV (p+p). Two collider detector setups MPD and SPD are foreseen. The setup BM@N (Baryonic Matter at Nuclotron) is commissioned for data taken at the existing Nuclotron beam fixed target area. The MPD construction is in progress whereas the SPD is still at the beginning design stage. An average luminosity of the collider is expected at the level of 1027 cm-2 s-1 for Au79+ and 1032 cm-2 s-1 for polarized protons at 27 GeV. The status of NICA design and construction work is briefly described below.


Sign in / Sign up

Export Citation Format

Share Document