scholarly journals Forced segregation in binary granular mixtures

2021 ◽  
Vol 249 ◽  
pp. 02001
Author(s):  
Salvatore Pillitteri ◽  
Geoffroy Lumay ◽  
Éric Opsomer ◽  
Nicolas Vandewalle

Mixing granular particles of di erent sizes is a common way of increasing the packing fraction. Recently, a model predicting the packing fraction, taking into account the inhomogeneity of the mixed small and large particles, has been proposed by S. Pillitteri et al. Under certain conditions, this model can be simpli ed and analytical solutions can be found. We present here these solutions, compared to experimental data, and the physical interpretation they can bring.

2008 ◽  
Vol 22 (30) ◽  
pp. 5335-5347 ◽  
Author(s):  
JIANXIANG TIAN ◽  
YUANXING GUI

Historically, the development of equations of state for fluids has almost invariably followed the lead of the van der Waals (vdW) equation which includes an attraction term and a repulsion term. In this paper, using a simple statistical mechanics model, we introduce a parameter σ as both the power and a coefficient of the packing fraction y which locates at the numerator of the vdW attraction term. Then nine equations of state are constructed to solve the critical conditions and the main thermodynamic properties of pure substances at liquid-vapor equilibrium. As a result, the correct critical compressibility factors of Nitrogen, Argon, Carbon dioxide, Ethene, Methane, Oxygen, Propene, Water and Hydrogen, are obtained with an optimal choice of parameter σ. Good predictions of these equations to the liquid-vapor equilibrium properties below critical temperature are reported and compared with experimental data.


1993 ◽  
Vol 18 ◽  
pp. 129-134 ◽  
Author(s):  
Masayoshi Nakawo ◽  
Shigeru Chiba ◽  
Hiroshi Satake ◽  
Shigeru Kinouchi

Isotopic composition of solid and liquid portions of wet snow was investigated experimentally. The compositions changed with time, δ values of ice becoming heavier than those for water. A simple model was proposed to explain their temporal variation. It predicted, however, a more rapid change of δ values than the trend obtained in the experiments. This suggests the presence of a “diffusion layer” adjacent to growing snow particles, where isotope concentration has dropped at the ice-water interface because of the fractionation during grain coarsening. The slope in δD–δ18O diagram estimated by the model is compatible with the experimental data. It is considered, therefore, that the freezing fraction, the part of the liquid which refreezes to relatively large particles during grain coarsening, could be estimated by measuring the isotope concentration.


2002 ◽  
Vol 16 (25) ◽  
pp. 3837-3846 ◽  
Author(s):  
A. Z. ZIAUDDIN AHMED ◽  
G. M. BHUIYAN

The embedded atom method (EAM) potentials, originally proposed for solid state calculations, have been applied to investigate the atomic transport property namely the diffusion coefficients of liquid Ni, Cu, Ag and Au. Two different liquid state theories, specifically the linearized Weeks–Chandler–Andersen (LWCA) theory and the Gibbs–Boguliubov variational method (GB) are used to evaluate the packing fraction near melting temperature. Calculated values for the diffusion coefficients are compared with the available experimental data. Results of variational calculations are found to be better in agreement. Results of calculations also allow us to conclude that the concerning EAM potentials are transferable to the study of atomic transport properties of liquid transition and noble metals.


1973 ◽  
Vol 187 (1) ◽  
pp. 745-755 ◽  
Author(s):  
M. W. Brown ◽  
K. J. Miller

A new theory for multiaxial fatigue is presented that is based on a physical interpretation of the mechanisms of fatigue crack growth. It may be represented graphically by contours of constant life, which are expressed mathematically by where ε1, ε2 and ε3 are the principal strains, •ε1 ≥ ε2 ≥ ε3. This equation underlines the importance of strain parameters in correlating fatigue data. It illustrates the effect of both the shear strain and the tensile strain normal to the plane of maximum shear. The theory is compared with several classical and recent theories, which are briefly reviewed. It is shown that classical theories of fatigue failure cannot correlate experimental data, and may be dangerous if used for design purposes.


2013 ◽  
Vol 717 ◽  
pp. 643-669 ◽  
Author(s):  
Anurag Tripathi ◽  
D. V. Khakhar

AbstractWe consider the segregation of spheres of equal size and different density flowing over an inclined plane, theoretically and computationally by means of distinct element method (DEM) simulations. In the first part of the work, we study the settling of a single higher-density particle in the flow of otherwise identical particles. We show that the motion of the high-density tracer particle can be understood in terms of the buoyancy and drag forces acting on it. The buoyancy force is given by Archimedes principle, with an effective volume associated with the particle, which depends upon the local packing fraction, $\phi $. The buoyancy arises primarily from normal forces acting on the particle, and tangential forces have a negligible contribution. The drag force on a sphere of diameter $d$ sinking with a velocity $v$ in a granular medium of apparent viscosity $\eta $ is given by a modified Stokes law, ${F}_{d} = c\pi \eta dv$. The coefficient ($c$) is found to decrease with packing fraction. In the second part of the work, we consider the case of binary granular mixtures of particles of the same size but differing in density. A continuum model for segregation is presented, based on the single-particle results. The number fraction profile for the heavy particles at equilibrium is obtained in terms of the effective temperature, defined by a fluctuation–dissipation relation. The model predicts the equilibrium number fraction profiles at different inclination angles and for different mass ratios of the particles, which match the DEM results very well. Finally, a complete model for the theoretical prediction of the flow and number fraction profiles for a mixture of particles of different density is presented, which combines the segregation model with a model for the rheology of mixtures. The model predictions agree quite well with the simulation results.


1968 ◽  
Vol 35 (3) ◽  
pp. 571-578
Author(s):  
C. Y. Liu

Analytical solutions are obtained for the problem of boundary effects on the fully developed wake (or cavity) behind an inclined flat plate at an arbitrary angle of attack. The investigation is based on the Helmholtz free-streamline theory. Results are applied to four cases: (a) Blockage in a fixed-wall tunnel, (b) planing on a stream of finite depth, (c) planing toward a waterfall, and (d) flow over a flat plate in a bounded jet. Comparisons with linearized theory and available experimental data are made.


1973 ◽  
Vol 187 (1) ◽  
pp. 745-755 ◽  
Author(s):  
M. W. Brown ◽  
K. J. Miller

A new theory for multiaxial fatigue is presented that is based on a physical interpretation of the mechanisms of fatigue crack growth. It may be represented graphically by contours of constant life, which are expressed mathematically by where ε1, ε2 and ε3 are the principal strains, •ε1 ≥ ε2 ≥ ε3. This equation underlines the importance of strain parameters in correlating fatigue data. It illustrates the effect of both the shear strain and the tensile strain normal to the plane of maximum shear. The theory is compared with several classical and recent theories, which are briefly reviewed. It is shown that classical theories of fatigue failure cannot correlate experimental data, and may be dangerous if used for design purposes.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yen-Lung Chen ◽  
Jing-Bo Hung ◽  
Shih-Lun Hsu ◽  
Shih-Chun Hsiao ◽  
Yuan-Chieh Wu

This paper simulates regular waves propagating over a submerged parabolic obstacle in the presence of a uniform/shear current using a two-dimensional numerical model, named COBRAS (Cornell Breaking and Structure). The numerical model solves the Reynolds-Averaged Navier-Stokes (RANS) equations and the free surface deformation is tracked using the volume of fluid method (VOF). The capability of the numerical model to simulate regular waves with a uniform or shear current over a constant water depth is first validated with available analytical solutions and experimental data. Comparisons among the experimental data, analytical solutions, and present numerical results show good agreements. Then, regular waves propagating over a submerged parabolic obstacle with a following current are investigated. Detailed discussions including those on the velocity and vorticity fields and the relation between free surface and vorticity are given.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Honggang Yang ◽  
Yi Wang ◽  
Xiaojing Meng ◽  
Dong Li ◽  
Xiaofan Cai

Abstract For practical operation of dividing manifolds, the discharge uniformity is a property generally required. To investigate the dependence of discharge uniformity on the manifold geometry and operating conditions, analytical solution to the governing equation, Bajura's equation, was secured. Furthermore, examples were derived by substituting experimental data into the analytical solutions; the resultant curves of discharge distribution indicated essential agreement between the theoretical and experimental results. For evaluating the property of discharge distribution, a uniformity index, U, was introduced. The calculated results of U showed a well-defined dependence of uniformity on the dimensionless parameter, γ, and a maximum of U presented around 1.44 of γ.


Sign in / Sign up

Export Citation Format

Share Document