scholarly journals Effects of a calcium deficiency on stomatal conductance and photosynthetic activity of Quercus robur seedlings grown on nutrient solution

1996 ◽  
Vol 53 (2-3) ◽  
pp. 325-335 ◽  
Author(s):  
M Ridolfi ◽  
O Roupsard ◽  
JP Garrec ◽  
E Dreyer
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dalila Lopes da Silva ◽  
Renato de Mello Prado ◽  
Luis Felipe Lata Tenesaca ◽  
José Lucas Farias da Silva ◽  
Ben-Hur Mattiuz

AbstractCalcium (Ca) deficiency in cabbage plants induces oxidative damage, hampering growth and decreasing quality, however, it is hypothesized that silicon (Si) added to the nutrient solution may alleviate crop losses. Therefore, this study aims at evaluating whether silicon supplied in the nutrient solution reduces, in fact, the calcium deficiency effects on cabbage plants. In a greenhouse, cabbage plants were grown using nutrient solutions with Ca sufficiency and Ca deficiency (5 mM) without and with added silicon (2.5 mM), arranged as a 2 × 2 factorial in randomized blocks, with five replications. At 91 days after transplanting, the plants were harvested for biological evaluations. In the treatment without added Si, Ca deficiency promoted oxidative stress, low antioxidant content, decreased dry matter, and lower quality leaf. On the other hand, added Si attenuated Ca deficiency in cabbage by decreasing cell extravasation while increasing both ascorbic acid content and fresh and dry matter, providing firmer leaves due to diminished leaf water loss after harvesting. We highlighted the agronomic importance of Si added to the nutrient solution, especially in crops at risk of Ca deficiency.


2012 ◽  
Vol 61 (2) ◽  
pp. 75-83 ◽  
Author(s):  
Edward Borowski

In pot experiments carried out in 2005 and 2006, tolerance to sodium chloride salinity of 4 cultivars of perennial ryegrass (<i>Lolium perenne</i>) ('Nira', 'Stadion', 'Ronija', 'Darius') was studied. Three concentrations of NaCl in medium (earth + sand): 0.0 mM (control); 50 mM; 100 mM, were used in the investigations. In three successive crops of grass, fresh weight yield of leaves, stomatal conductance, photosynthesis intensity, content of chlorophyll and PS II maximum quantum yield (F<sub>v</sub>/F<sub>m</sub>) were determined. The obtained results showed that perennial ryegrass is a species tolerant to NaCl salinity. Among the studied cultivars, cv. 'Ronija' showed the highest tolerance, whereas cv. 'Nira' showed the lowest. The growth of perennial ryegrass plants under salinity conditions was limited by low stomatal conductance of leaves and photosynthesis, but not by the photosynthetic activity of chlorophyll and its contents.


2021 ◽  
Author(s):  
Marcilene Machado dos Santos Sarah ◽  
Renato de Mello Prado ◽  
Jonas Pereira de Souza Júnior ◽  
Gelza Carliane Marques Teixeira ◽  
João Carlos dos Santos Duarte ◽  
...  

Abstract Potassium (K) deficiency affects physiological performance and decreasing vegetative growth in common bean plants. However, silicon (Si) supplied via nutrient solution or foliar application may relieve nutritional stress. Thus, two experiments were carried out: initially, a test was performed to determine the best source and concentration of leaf-applied Si. Subsequently, the chosen Si source was applied via nutrient solution or via leaf to verify if it is efficient in alleviating the effects caused by K deficiency. To that end, a completely randomized 2 x 3 factorial design was used, with two levels of K: deficient (0.2 mmol L− 1 of K) and sufficient (6 mmol L− 1 of K); and Si: via nutrient solution (2 mmol L− 1 of Si) or foliar spray (5.4 mmol L− 1 of Si) and control (0 mmol L− 1 of Si). In the first experiment, foliar spraying with sodium silicate and stabilized potassium at a concentration of 5.4 mmol L− 1 was better in favoring the physiology of bean plants. In the second experiment, K deficiency without the addition of Si compromised the plant's growth. Si applied through nutrient solution or foliar spray relieved K deficiency stress, increasing chlorophylls and carotenoids content, photosynthetic activity, water use efficiency and vegetative growth.


2018 ◽  
Vol 31 (4) ◽  
pp. 907-916 ◽  
Author(s):  
Bárbara Lima do Sacramento ◽  
André Dias de Azevedo Neto ◽  
Andréia Teixeira Alves ◽  
Silvany Cardim Moura ◽  
Rogério Ferreira Ribas

ABSTRACT The objective of the present study was to evaluate the tolerance to cadmium (Cd) of sunflower genotypes grown in greenhouse conditions, and the effectiveness of using photosynthetic parameters as physiological indicators of this tolerance. Seeds of two sunflower genotypes previously identified as tolerant (H358) and Cd-sensitive (AG960) to Cd were used. The seeds were germinated in plastic cups containing plant substrate; after 9 days, the seedlings were transplanted to plastic basins containing a nutrient solution with 0 or 10 µM of Cd, where they remained for 16 days. Samples of the plants were harvested every 5 days. The experiment was carried out in a randomized complete design, using a 4×2×2 factorial arrangement (4 days of grown in a nutrient solution with Cd, 2 sunflower genotypes, and 2 Cd levels) with four replications. Cd stress decreased CO2 net assimilation, stomatal conductance, carboxylation efficiency, photosynthetic pigment contents, potential quantum yield (Fv/Fm), and effective quantum yield of plants of the two evaluated genotypes. The decrease in photosynthetic rates of these plants was caused by both stomatal and non-stomatal limitations. Plants of the AG960 genotype showed more pronounced deleterious effects due to Cd stress than those of the H358 genotype. Thus, CO2 net assimilation rate, stomatal conductance, and chloroplast pigment content are good physiological indicators of sunflower tolerance to Cd and can at least in part, explain the greater tolerance of the H358 genotype to Cd stress when compared to the AG960 genotype.


2020 ◽  
Vol 41 (6) ◽  
pp. 2555-2570
Author(s):  
Camila Alves de Souza ◽  
◽  
Alexsandro Oliveira da Silva ◽  
Claudivan Feitosa de Lacerda ◽  
Ênio Farias de França e Silva ◽  
...  

Water scarcity and the use of brackish water are the main challenges for agricultural development. In view of this, the present study proposes to examine physiological responses of the broadleaf-cress crop in an NFT hydroponics system according to the use of brackish water and nutrient solution circulation times. The treatments were distributed in a randomized block design with five water salinity levels (ECw: 0.6, 1.6, 2.6, 3.6 and 4.6 dS m-1) and two nutrient solution circulation times (T1 = 10 min and T2 = 15 min), totaling 10 treatments with four replicates, which resulted in 40 experimental plots. The following variables were analyzed: net photosynthetic rate, stomatal conductance, transpiration, leaf proline content, shoot moisture content, stem diameter and root length. The maximum observed photosynthetic rates were 20.9 mmol m-2 s-1 (T1) and 20.0 mmol m-2 s-1 (T2). Maximum stomatal conductance was 0.44 mol m-2 s-1, which decreased by 63.4% at the highest salinity level. The increasing ECw levels in both growing cycles evaluated reduced gas exchanges, stem diameter and root length. The nutrient solution circulation time of 15 min provided the most satisfactory results for the analyzed variables.


2021 ◽  
Vol 39 (1) ◽  
pp. 65-71
Author(s):  
Italo MG Sampaio ◽  
Mário L Silva Júnior ◽  
Ricardo FPM Bittencourt ◽  
Gabriel AM dos Santos ◽  
Fiama KM Nunes ◽  
...  

ABSTRACT In the last years, jambu has become popular and greatly appreciated, due to its remarkable taste. Thus, hydroponically cultivated jambu is promising, since it achieves better yield and production quality. The aim of this study was to evaluate the effect of ionic concentration in nutrient solution on growth, productivity and gas exchange of jambu. The experimental design was completely randomized, with five treatments and four replicates. The treatments consisted of variations of ionic concentration using the nutrient solution proposed by Hoagland & Arnon (25, 50, 75, 100 and 125%). The length of the main stem, stem diameter, number of inflorescence, leaf area, fresh and dry biomass (shoot, root and inflorescence), photosynthesis, stomatal conductance, transpiration, internal CO2 concentration, Ci/Ca ratio and instant carboxylation efficiency were evaluated. Ionic concentrations significantly affected the studied variables, except the stem diameter, the internal CO2 concentration and the Ci/Ca ratio. The number of inflorescences and the leaf area grew linearly with maximum values (37.8 units plant-1 and 1650.8 cm2 plant-1, respectively) obtained in ionic concentration of 125%. Maximum responses were observed for shoot fresh and dry mass (63.9 and 6.9 g plant-1), root fresh and dry mass (16.7 and 2.0 g plant-1) inflorescence fresh and dry mass (11.0 and 1.8 g plant-1), respectively, at ionic concentration of 125%. Liquid photosynthesis, stomatal conductance, transpiration and instant carboxylation efficiency achieved maximum responses of 17.9 µmol CO2 m-2 s-1, 0.3 mol H2O m-2 s-1, 6.3 mmol m-2 s-1 and 0.06 with estimated concentrations of 84, 70, 80 and 83% of ionic strength, respectively. Thus, we concluded that the ionic concentration of 125% is indicated to obtain a greater biomass accumulation.


Author(s):  
Aleš Jezdinský ◽  
Robert Pokluda ◽  
Katalin Slezák

In the trial the effect of nitrogen deficiency and potassium surplus on the dry weight, photosynthetic activity (A), transpiration (E), stomatal conductance (gs) and water use efficiency (WUE) were examined. The macroelement content of aboveground parts were analysed, too. The plants were grown in pots filled by pure Sphagnum peat. The top-dressing started in the 3-leave stage of plants, with different solution (every irrigation): control treatment: 0.28 g N, 0.097 g P (0.22 g P2O5), 0.42 g K (0.50 g K2O) per litre; nitrogen-deficiency: 0.097 g P (0.22 g P2O5), 0.42 g K (0.50 g K2O) per litre; potassium surplus: 0.28 g N, 0.097 g P (0.22 g P2O5), 0.83 g K (1.0 g K2O) per litre. The transplants grown in the commercial fertilization technology (control treatment) almost in every evaluated parameters shown average value. The potassium surplus resulted significantly higher transpiration activity (2.58 mmol H2O. m−2. s−1) and photosynthetic activity (11.54 μmol CO2. m−2. s−1) than the nitrogen deficiency (E: 1.91 mmol H2O. m−2. s−1and A: 9.01 μmol CO2. m−2. s−1), but without significant differences with control treatment. The N, P and K content of aboveground parts was significantly lower in the nitrogen deficiency treatment, than in the case of the potassium surplus, too. The effect of treatments on the dry weight of the plants, the stomatal conductance and the water use efficiency was not proven statistically.


2017 ◽  
Vol 35 (2) ◽  
pp. 198-204 ◽  
Author(s):  
Dilier Olivera Viciedo ◽  
Renato De Mello Prado ◽  
Rodolfo Lizcano Toledo ◽  
Luiz Cláudio Nascimento dos Santos ◽  
Kolima Peña Calzada

There are unknown thresholds about the effects of ammonia toxicity in the cultivation of radish and its prejudice is higher in the root than in the aerial part, been the use of silicon an alternative to mitigate this toxicity. The objective was to evaluate the response of radish crop to different concentrations of an ammonium nutrient solution in the absence and presence of silicon under greenhouse conditions. After 30 days of germination were evaluated photosynthesis, green color index, stomatal conductance, transpiration, leaf area, tap root diameter, dry matter accumulation of nitrogen and silicon in shoot parts and roots respectively. Ammonia toxicity in radish decreased photosynthesis, transpiration, and stomatal conductance, having greater prejudice in the dry matter accumulation of root and aerial part, this effect was mitigated with the presence of silicon in the nutrient solution.


Sign in / Sign up

Export Citation Format

Share Document