Polydispersity and scaling in linear polymer condensates

1984 ◽  
Vol 45 (1) ◽  
pp. 151-155 ◽  
Author(s):  
M. Daoud ◽  
F. Family
Keyword(s):  
2021 ◽  
Author(s):  
Fabian R. Bloesser ◽  
Sarah L. Walden ◽  
Ishrath M. Irshadeen ◽  
Lewis C. Chambers ◽  
Christopher Barner-Kowollik

We demonstrate the light-induced, crosslinker mediated collapse of linear polymer chains into single-chain nanoparticles (SCNPs) capable of self-reporting their unfolding.


Author(s):  
Jie Chen ◽  
Yifei Wang ◽  
Weixing Chen

Multilayer composites have the potential applications in organic film capacitors due to their excellent dielectric and breakdown characteristic. However, poor efficiency (η) and limited available energy density (Ue) of the...


2021 ◽  
Vol 23 (10) ◽  
pp. 5984-5991
Author(s):  
Letizia Tavagnacco ◽  
Ester Chiessi ◽  
Emanuela Zaccarelli

By using extensive all-atom molecular dynamics simulations of an atactic linear polymer chain, we unveil the role of pressure in the coil-to-globule transition of poly(N-isopropylacrylamide) (PNIPAM).


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2095
Author(s):  
Dae Hoon Lee ◽  
Yoshinori Arisaka ◽  
Asato Tonegawa ◽  
Tae Woong Kang ◽  
Atsushi Tamura ◽  
...  

The cytocompatibility of biological and synthetic materials is an important issue for biomaterials. Gelatin hydrogels are used as biomaterials because of their biodegradability. We have previously reported that the mechanical properties of gelatin hydrogels are improved by cross-linking with polyrotaxanes, a supramolecular compound composed of many cyclic molecules threaded with a linear polymer. In this study, the ability of gelatin hydrogels cross-linked by polyrotaxanes (polyrotaxane–gelatin hydrogels) for cell cultivation was investigated. Because the amount of polyrotaxanes used for gelatin fabrication is very small, the chemical composition was barely altered. The structure and wettability of these hydrogels are also the same as those of conventional hydrogels. Fibroblasts adhered on polyrotaxane–gelatin hydrogels and conventional hydrogels without any reduction or apoptosis of adherent cells. From these results, the polyrotaxane–gelatin hydrogels have the potential to improve the mechanical properties of gelatin without affecting cytocompatibility. Interestingly, when cells were cultured on polyrotaxane–gelatin hydrogels after repeated stress deformation, the cells were spontaneously oriented to the stretching direction. This cellular response was not observed on conventional hydrogels. These results suggest that the use of a polyrotaxane cross-linking agent can not only improve the strength of hydrogels but can also contribute to controlling reorientation of the gelatin.


2012 ◽  
Vol 557-559 ◽  
pp. 973-978
Author(s):  
Zhong Yi Xu ◽  
Lei Du ◽  
Li Qiang Wan ◽  
Fa Rong Huang

A novel linear benzoxazine-containing polytriazole was successfully synthesized via metal-free click reaction. Benefited from the advantages of click reaction, the synthesis procedure was easily and efficiently. The linear polymer could be transformed into crosslinked structure after ring-opening polymerization of oxazine induced by the increasing temperature. The FT-IR characterization verified the structure transformation between linear and crosslinked polymer. Moreover, the thermal properties and thermal degradation behaviors of linear polymer and the corresponding crosslinked polymer were studied by DSC and TGA. The novel polytriazole was proved to be a kind of thermal stable polymers with high thermal decomposition temperature (Td5over 300°C).


1988 ◽  
Vol 144 (5-6) ◽  
pp. 555-557 ◽  
Author(s):  
B. Smit ◽  
A. Van Der Put ◽  
C.J. Peters ◽  
J. De Swaan Arons ◽  
J.P.J. Michels

Sign in / Sign up

Export Citation Format

Share Document