MOLECULAR DYNAMICS STUDY OF HIGH-TEMPERATURE GRAIN-BOUNDARY STABILITY IN A (100) Σ = 29 BICRYSTAL MODEL

1988 ◽  
Vol 49 (C5) ◽  
pp. C5-381-C5-385
Author(s):  
T. NGUYEN ◽  
S. YIP ◽  
D. WOLF
Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1693
Author(s):  
Fei Zhao ◽  
Jie Zhang ◽  
Chenwei He ◽  
Yong Zhang ◽  
Xiaolei Gao ◽  
...  

TiAl alloy represents a new class of light and heat-resistant materials. In this study, the effect of temperature, pressure, and grain size on the high-temperature creep properties of nanocrystalline TiAl alloy have been studied through the molecular dynamics method. Based on this, the deformation mechanism of the different creep stages, including crystal structure, dislocation, and diffusion, has been explored. It is observed that the high-temperature creep performance of nanocrystalline TiAl alloy is significantly affected by temperature and stress. The higher is the temperature and stress, the greater the TiAl alloy’s steady-state creep rate and the faster the rapid creep stage. Smaller grain size accelerates the creep process due to the large volume fraction of the grain boundary. In the steady-state deformation stage, two kinds of creep mechanisms are manly noted, i.e., dislocation motion and grain boundary diffusion. At the same temperature, the creep mechanism is dominated by the dislocation motion in a high-stress field, and the creep mechanism is dominated by the diffusion creep in the low-stress field. However, it is observed to be mainly controlled by the grain boundary diffusion and lattice diffusion in the rapid creep stage.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2606
Author(s):  
Xiang Xu ◽  
Peter Binkele ◽  
Wolfgang Verestek ◽  
Siegfried Schmauder

As Nickel (Ni) is the base of important Ni-based superalloys for high-temperature applications, it is important to determine the creep behavior of its nano-polycrystals. The nano-tensile properties and creep behavior of nickel polycrystalline nanopillars are investigated employing molecular dynamics simulations under different temperatures, stresses, and grain sizes. The mechanisms behind the creep behavior are analyzed in detail by calculating the stress exponents, grain boundary exponents, and activation energies. The novel results in this work are summarized in a deformation mechanism map and are in good agreement with Ashby’s experimental results for pure Ni. Through the deformation diagram, dislocation creep dominates the creep process when applying a high stress, while grain boundary sliding prevails at lower stress levels. These two mechanisms could also be coupled together for a low-stress but a high-temperature creep simulation. In this work, the dislocation creep is clearly observed and discussed in detail. Through analyzing the activation energies, vacancy diffusion begins to play an important role in enhancing the grain boundary creep in the creep process when the temperature is above 1000 K.


2008 ◽  
Vol 50 (5) ◽  
pp. 956-965 ◽  
Author(s):  
Takuya Uehara ◽  
Naoki Wakabayashi ◽  
Yoshitaka Hirabayashi ◽  
Nobutada Ohno

1988 ◽  
Vol 141 ◽  
Author(s):  
J. F. Lutsko ◽  
D. Wolf ◽  
S. R. Phillpot

AbstractThe behavior of a metallic grain boundary at high temperatures is studied using an embedded atom potential. A recently developed molecular dynamics code is used which allows the simulation of an isolated grain boundary at temperatures as high as the bulk melting point. The stability of the boundary below the melting point is studied and compared with earlier investigations which have suggested the existence of a “premelting“ transition. It is found that the boundary migrates at high temperature but remains well defined up to the bulk melting point. In contrast to simulations of ideal crystals, it was not possible to superheat the grain boundary due to the nucleation of bulk melting at the boundary.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 156
Author(s):  
Hong He ◽  
Shangyi Ma ◽  
Shaoqing Wang

Heat treatment is a necessary means to obtain desired properties for most of the materials. Thus, the grain boundary (GB) phenomena observed in experiments actually reflect the GB behaviors at relatively high temperature to some extent. In this work, 405 different GBs were systematically constructed for body-centered cubic (BCC) metals and the grain boundary energies (GBEs) of these GBs were calculated with molecular dynamics for W at 2400 K and β-Ti at 1300 K and by means of molecular statics for Mo and W at 0 K. It was found that high temperature may result in the GB complexion transitions for some GBs, such as the Σ11{332}{332} of W. Moreover, the relationships between GBEs and sin(θ) can be described by the functions of the same type for different GB sets having the same misorientation axis, where θ is the angle between the misorientation axis and the GB plane. Generally, the GBs tend to have lower GBE when sin(θ) is equal to 0. However, the GB sets with the <110> misorientation axis have the lowest GBE when sin(θ) is close to 1. Another discovery is that the local hexagonal-close packed α phase is more likely to form at the GBs with the lattice misorientations of 38.9°/<110>, 50.5°/<110>, 59.0°/<110> and 60.0°/<111> for β-Ti at 1300 K.


Sign in / Sign up

Export Citation Format

Share Document