scholarly journals Molecular Dynamics Simulation on Creep Behavior of Nanocrystalline TiAl Alloy

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1693
Author(s):  
Fei Zhao ◽  
Jie Zhang ◽  
Chenwei He ◽  
Yong Zhang ◽  
Xiaolei Gao ◽  
...  

TiAl alloy represents a new class of light and heat-resistant materials. In this study, the effect of temperature, pressure, and grain size on the high-temperature creep properties of nanocrystalline TiAl alloy have been studied through the molecular dynamics method. Based on this, the deformation mechanism of the different creep stages, including crystal structure, dislocation, and diffusion, has been explored. It is observed that the high-temperature creep performance of nanocrystalline TiAl alloy is significantly affected by temperature and stress. The higher is the temperature and stress, the greater the TiAl alloy’s steady-state creep rate and the faster the rapid creep stage. Smaller grain size accelerates the creep process due to the large volume fraction of the grain boundary. In the steady-state deformation stage, two kinds of creep mechanisms are manly noted, i.e., dislocation motion and grain boundary diffusion. At the same temperature, the creep mechanism is dominated by the dislocation motion in a high-stress field, and the creep mechanism is dominated by the diffusion creep in the low-stress field. However, it is observed to be mainly controlled by the grain boundary diffusion and lattice diffusion in the rapid creep stage.

2011 ◽  
Vol 287-290 ◽  
pp. 769-776 ◽  
Author(s):  
Lai Rong Xiao ◽  
Xi Min Zhang ◽  
Yan Wang ◽  
Wei Li ◽  
Quan Sheng Sun ◽  
...  

In the present work, Zn-1.0Cu-0.2Ti alloy was prepared by melt casting and extruding processes. High temperature creep property of the alloy was determined using electronic creep relaxation testing machine. Microstructures of the alloy before and after creep test were observed and its high temperature creep mechanism was discussed. The results show that the steady-state creep rate of the alloy increases with temperature and stress. The logarithm of steady-state creep rate (ln) shows a linearity relationship with the logarithm of the stress (lnσ) and reciprocal of temperature (1/T). The stress exponent and apparent activation energy for creep have been determined to be 5.10 and 83.7 kJ/mol, separately. The predominant mechanism is mainly self-diffusional creep. The second phases on the grain boundary can block the slip of grain boundary and dislocation motion which can improve creep resistance of the alloy.


1997 ◽  
Vol 12 (8) ◽  
pp. 2043-2047 ◽  
Author(s):  
J. E. Shield ◽  
M. J. Kramer

The deformation characteristics of icosahedral Al–Cu–Fe quasicrystals were determined by high temperature creep experiments between 680 and 720 °C and 15 and 41 MPa. The deformation process was determined to be controlled by grain boundary mechanisms. Both the stress and grain size sensitivity exponents were found to be 2, suggesting that grain boundary sliding was the rate-controlling deformation mechanism. Microstructural analysis supported this conclusion, as no intragranular defects were produced during the deformation experiments.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2606
Author(s):  
Xiang Xu ◽  
Peter Binkele ◽  
Wolfgang Verestek ◽  
Siegfried Schmauder

As Nickel (Ni) is the base of important Ni-based superalloys for high-temperature applications, it is important to determine the creep behavior of its nano-polycrystals. The nano-tensile properties and creep behavior of nickel polycrystalline nanopillars are investigated employing molecular dynamics simulations under different temperatures, stresses, and grain sizes. The mechanisms behind the creep behavior are analyzed in detail by calculating the stress exponents, grain boundary exponents, and activation energies. The novel results in this work are summarized in a deformation mechanism map and are in good agreement with Ashby’s experimental results for pure Ni. Through the deformation diagram, dislocation creep dominates the creep process when applying a high stress, while grain boundary sliding prevails at lower stress levels. These two mechanisms could also be coupled together for a low-stress but a high-temperature creep simulation. In this work, the dislocation creep is clearly observed and discussed in detail. Through analyzing the activation energies, vacancy diffusion begins to play an important role in enhancing the grain boundary creep in the creep process when the temperature is above 1000 K.


1995 ◽  
Vol 391 ◽  
Author(s):  
L. M. Klinger ◽  
E. E. Glickman ◽  
V. E. Fradkov ◽  
W. W. Mullins ◽  
C. L. Bauer

AbstractThe effect of surface and grain-boundary diffusion on interconnect reliability is addressed by extending the theory of thermal grooving to arbitrary grain-boundary flux. For a periodic array of grain boundaries, three regimes are identified: (1) equilibrium, (2) global steady state, and (3) local steady state. These regimes govern the stability of polycrystalline materials subjected to large electric (electromigration) or mechanical (stress voiding) fields, especially in thin films where grain size approximates film thickness.


Metal Science ◽  
1981 ◽  
Vol 15 (2) ◽  
pp. 73-78 ◽  
Author(s):  
K. U. Snowden ◽  
D. S. Hughes ◽  
P. A. Stathers

Sign in / Sign up

Export Citation Format

Share Document