scholarly journals Assessment of the tsunami hazard on Moroccan coasts using numerical modeling

2018 ◽  
Vol 149 ◽  
pp. 02079
Author(s):  
Meriem Amine ◽  
Latifa Ouadif ◽  
Khadija Baba ◽  
Lahcen Bahi

Caused by earthquakes in the marine environment, tsunamis are often of particular violence. Pests, their damage far exceeds those caused by earthquakes earthquakes. In Morocco, seismic sensors in the national network often detect earthquakes in the marine environment. However, specialists minimize their threat given the peculiarity of the Moroccan ocean zone. The latter is characterized by the importance of the length of the faults and the depth of the seismic focus. This work can be considered as a first approach to the study and understanding tsunamis. Although Morocco has known since historical times, earthquakes and tsunamis along its coasts. This preliminary study is mainly intended to show the contribution of the numerical simulation of tsunamis, with a concrete application of the 1755 Tsunami of Lisbon based on the four source zones involving the five potentially tsunamigenic faults that are generally mentioned in the literature for this major event.

Akustika ◽  
2021 ◽  
pp. 100-106
Author(s):  
sergey Timushev ◽  
Alexey Yakovlev ◽  
Petr Moshkov

The problem of simulation the noise generated during the operation of the propeller is considered. Calculation methods are described and numerical simulation of the noise of a light aircraft propeller by the acoustic-vortex method is performed. The results of numerical modeling of the tonal components of the propeller noise when operating under static conditions are compared with experimental data and calculation results based on a semiempirical model.


Author(s):  
Fernando Peña

This chapter addresses the numerical modeling of freestanding rigid blocks by means of a semi-discrete approach. The pure rocking motion of single rigid bodies can be easily studied with the differential equation of motion, which can be solved by numerical integration or by linearization. However, when we deal with sliding and jumping motion of rigid bodies, the mathematical formulation becomes quite complex. In order to overcome this complexity, a Semi-Discrete Model (SMD) is proposed for the study of rocking motion of rigid bodies, in which the rigid body is considered as a mass element supported by springs and dashpots, in the spirit of deformable contacts between rigid blocks. The SMD can detect separation and sliding of the body; however, initial base contacts do not change, keeping a relative continuity between the body and its base. Extensive numerical simulations have been carried out in order to validate the proposed approach.


Geosciences ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 66 ◽  
Author(s):  
Luisa Galgani ◽  
Steven Loiselle

Plastic particles are ubiquitous in the marine environment. Given their low density, they have the tendency to float on the sea surface, with possible impacts on the sea surface microlayer (SML). The SML is an enriched biofilm of marine organic matter, that plays a key role in biochemical and photochemical processes, as well as controlling gas exchange between the ocean and the atmosphere. Recent studies indicate that plastics can interfere with the microbial cycling of carbon. However, studies on microplastic accumulation in the SML are limited, and their effects on organic matter cycling in the surface ocean are poorly understood. To explore potential dynamics in this key ocean compartment, we ran a controlled experiment with standard microplastics in the surface and bulk water of a marine monoculture. Bacterial abundance, chromophoric dissolved organic matter (CDOM), and oxygen concentrations were measured. The results indicate an accumulation of CDOM in the SML and immediate underlying water when microplastic particles are present, as well as an enhanced oxygen consumption. If extrapolated to a typical marine environment, this indicates that alterations in the quality and reactivity of the organic components of the SML could be expected. This preliminary study shows the need for a more integrated effort to our understanding the impact of microplastics on SML functioning and marine biological processes.


2018 ◽  
Vol 155 ◽  
pp. 01019
Author(s):  
Angela Kuzovova ◽  
Ivan Kuzmenko

A method is proposed for imaging of scattering heterogeneities in continuous media on the basis of numerical modeling of forward and backward wave propagation. It is shown that the combination of a solution for backward propagation of waves and direct wave propagation allows us to visualize scattering heterogeneities. The results of numerical simulation are presented.


2011 ◽  
Vol 34 (1) ◽  
pp. 29-47 ◽  
Author(s):  
V. Ranga Rao ◽  
N. T. Reddy ◽  
J. Sriganesh ◽  
M. V. Ramana Murthy ◽  
Tad S. Murty

Sign in / Sign up

Export Citation Format

Share Document