scholarly journals The clays after heat treatment as the concrete active mineral additive

2018 ◽  
Vol 170 ◽  
pp. 03021
Author(s):  
Olga Bazhenova ◽  
Sofia Bazhenova ◽  
V. Nemirova ◽  
Dmitriy Bazhenov

Active mineral additives are one of the most common components of cement systems now. They are entered cements of increase in extent of hydration, the directed formation of structure of a cement stone from more stable hydrate phases of the lowered basicity, for the purpose of improvement of construction and technical properties of cements, by cutting of costs of fuel raw material resources for their production, giving to cements of some specific properties. In work the possibility of use as active mineral additives not only the granulated slags, but also local clays which industrially can give certain puzzolan properties are considered. It is proved that heat treatment of clay breeds significantly increases their puzzolan activity that does them suitable for use as active mineral additive instead of the domain granulated slag by production of the portland cement.

2021 ◽  
Vol 03 (03) ◽  
pp. 7-12
Author(s):  
Gulsanam Ruzimurodovna Tursunova ◽  
◽  
Farrukh Bakhtiyarovich Atabaev ◽  

The article presents the results of testing the use of Angren dry remote active ash and slag in Portland cement as an active mineral additive. It was found that Portland cement with the addition of Angren dry remote active ash and slag renders karrazastoy, ekanomet clinker and it is proved that hydro removed ash and slag (2011 year) does not recommend as an active mineral additive. Therefore, dry remote active ash and slag is recommended for use as an active mineral additive in the production of cement, improving its construction and technical properties. The possibility of using Angren dry remote active ash and slag as an active mineral component for producing cements with low corrosion resistance is shown. Angren dry remote active ash and slag contributes to the formation of the structure of the cement stone, increases its density and strength against aggressive ions, causing increased resistance in aggressive environments. And save up to 30% of cement. It has been established that Portland cement with the addition of Angren dry remote active ash and slag has an intensifying effect on the formation of clinker minerals. Therefore, the Angren dry remote active ash and slag is recommended for use as a mineralizing additive in the production of cement. Use of chemical industry waste with replacement of expensive natural production and consumption waste. At the same time, an environmental problem is being addressed.


2020 ◽  
Author(s):  
Ekaterina Gerasimova ◽  
Elizaveta Gumirova

The paper deals with the problem of utilization of red mud which is a waste product from alumina production using the Bayer method. The principal possible use for the red mud of JSC “Bogoslovsky aluminum plant” (Sverdlovsk region) for the compositions based on Portland cement is shown. It was found that the mud introduction accelerates beginning of the cement paste setting and thickens the paste reducing its mobility. It is concluded that the introduction of red mud up to 30 % is justified in terms of strength indicators. The work is carried out using mathematical planning of experiments. Keywords: red mud, Portland cement, active mineral additive, composition, properties, bauxite, chemical composition, cement stone strength, mathematical planning of experiments


2021 ◽  
Vol 4 (11(112)) ◽  
pp. 42-49
Author(s):  
Maksym Serik ◽  
Olga Samokhvalova ◽  
Iryna Kholobtseva ◽  
Natalia Fedak ◽  
Olena Bolkhovitina ◽  
...  

This paper reports the results of studying the influence of two types of protein-mineral additives on the properties of butter biscuit emulsion. The additives are considered as a source of digestible calcium compounds and as a functional and technological component that can improve the quality of buttery flour products. The parameters for pre-hydration of additives in the environment of cow's milk for better implementation of their functional and technological characteristics have been substantiated. It was established that the use of protein-mineral additives in the manufacture of emulsions in the amount of up to 7 % leads to an increase in the emulsification capacity of model systems by 1.5...1.65 times. Improved emulsion resistance has been proven, in particular after heat treatment. It was established that using 5...7 % of the additive produces a pronounced thermal stabilizing effect. After heat treatment at a temperature of 90...95 °C during 3×60 s, when using the protein-mineral additive, a volume of the released water and fat phase increases by 12...25 %. When applying the improved additive, a volume of the released phases increases by 3...10 %. A lower degree of coalescence of the fat phase as part of the emulsion when using the improved protein-mineral additive was microscopically confirmed. The fact of increasing the effective viscosity of emulsions when using up to 7 % of the improved protein-mineral additive was established. This is a positive fact in terms of stabilizing the emulsions and improving their stability as one of the important factors related to the quality of finished flour confectionery. It was established that the improved form of the additive, due to the content of chondroitin sulfates, provides for a better effect on the characteristics of emulsions, which should have a positive influence on the quality of flour-based buttery products.


Author(s):  
N. Chernysheva ◽  
S. Shatalova ◽  
A. Evsyukova ◽  
Hans-Bertram Fisher

the dynamically developing construction in the Russian Federation makes it necessary to expand the range of alternative types of binders and materials based on them. Such a binder is a previously developed composite gypsum binder (CGB), used for the production of materials of various functional purposes. The manufacture and use of CGB-based composites was made possible by studying the Portland cement-gypsum-water system, the stability of which is ensured by introducing an appropriate amount of active mineral additives that reduce the concentration of Ca(OH) 2 in the liquid phase of the hardening system and create the possibility of hardening under certain conditions without dangerous internal stresses. In this paper, we consider the possibility of using composite gypsum binder for fine-milled quartzitic sandstone crushing dropout and concrete scrap crushing dropout as an active mineral additive. Rational compositions of composite gypsum binder are developed and their basic properties are studied. The reasonable choice of the amount of active mineral additive allows optimizing the properties of the composite gypsum binder.


2018 ◽  
Vol 196 ◽  
pp. 04018 ◽  
Author(s):  
Grigory Nesvetaev ◽  
Yulia Koryanova ◽  
Tatiana Zhilnikova

A model describing the variation in autogenous shrinkage and drying shrinkage of portland cement concrete, depending on the volume of aggregates and the shrinkage of hardened cement paste, is presented. The equation to calculate shrinkage of concrete as a function of the volume of aggregates and shrinkage of a hardened cement paste was proposed. Formulas are proposed that describe the change in the shrinkage of hardened cement paste as a function of water/cement. The results of studies of the effect of superplasticizers and mineral additives on the autogenous shrinkage and the drying shrinkage of hardened cement paste are presented. Concretes made with superplasticizer and mineral additive may have the potential lower the value of drying shrinkage. The shrinkage value can be lowered from 30% till 70%. Concretes containing superplasticizers and mineral additives can potentially have the autogenous shrinkage reduced to 75%, or increased to 180%.


2020 ◽  
Vol 992 ◽  
pp. 104-110
Author(s):  
Svetlana V. Samchenko ◽  
D.A. Zorin

The influence of the artificial additive introduced at the joint grinding of granulated slag, Portland cement clinker and gypsum on the Portland slag cement hydration, its compression strength at an early stage and shrinkage deformation is investigated. It was found that in the presence of sulfoferrite clinker there is an amorphization of cement stone structure with formation of stone with high density and strength in early setting. The open porosity of the hardened paste is reduced by 13 – 15 % in comparison with plain Portland slag cement. The samples strength increases by 1.55 - 1.78 times at grade stage, by 15.5 - 19.4 % in bending and by 6.4 - 11.2 % in compression.


2020 ◽  
Vol 992 ◽  
pp. 3-8
Author(s):  
Aleksei B. Brykov ◽  
S.V. Mjakin ◽  
M.M. Sychov

Electron beam (EB) and heat treatment of silica-containing aggregates and mineral additives for Portland cement mortars is shown to affect their activity in alkali-silica reaction (ASR) damaging concrete structures. In the case of ordinary mortar based on the sand free of alkali-reactive inclusions, both heating to 900°C and EB processing result in a significant increase of reactivity growing with the absorbed dose in the range from 100 to 600 kGy and correlating with the increase in the content of acidic hydroxyl groups on the surface. For sand with reactive chalcedony inclusions, EB treatment results in the growth of their reactivity while heating provides its significant decrease. In case of mineral additives such as silica fume and metakaolin known as very effective ASR-inhibitors, similar processing leads to the increase of their activity in mitigation of ASR. The observed effect is promising for simulation of expansion processes caused by ASR and enhancement of concrete structure resistance to alkali destruction during exploration.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042091
Author(s):  
N N Shangina ◽  
T Y Safonova

Abstract The possibility of obtaining mixed air binder of high strength and water resistance by using active mineral additives has been considered. In this work, the gypsum binder has been replaced by a combination of hydrated lime with active additives - metakaolin and granulated slag. The ratio effect of the silica component to the binder on the compressive strength of the stone was studied. According to the results of X-ray phase analysis, the presence of tobermorite-like calcium hydrosilicates and the absence of hydrate lime phase were diagnosed in the stone. The influence of electrolyte additives - salts with three-charged cations - on stone hardening kinetics is shown. Increase in the compressive strength of 28-day-old stone from the modified mixed air binder by 5% with the introduction of 1% of the binder mass aluminum sulfate in the mixing water was established. The use of FeCl3 solution for mixing the modified mixed air binder leads to a decrease in the compressive strength of the 28-day-old stone. The mixing of the modified mixed air binder with Al2(SO4)3 solution reduces the time of setting.


Author(s):  
С. Шаталова ◽  
S. Shatalova ◽  
Н. Чернышева ◽  
N. Chernysheva ◽  
Е. Глаголев ◽  
...  

The dynamically developing construction of the Russian Federation makes it necessary to expand the range of alternative types of binders and materials based on them. Such binders include a composite gypsum binder used for the production of materials for various functional purposes. The manufacture and use of products based on composite gypsum binders is made possible by studying the Portland cement – gypsum – water system, the stability of which is ensured by introducing of an appropriate amount of active mineral additives. Such additives reduce the concentration of Са (ОН) 2 in the liquid phase of the hardening system and create the possibility of hardening under certain conditions without dangerous internal tensions. This article discusses the obtaining of effective cellular concrete on a composite gypsum binder. Cellular concrete surpasses some traditional materials in its structure, properties, methods of preparation, and they are universal in terms of operational properties. The possibility and expediency of using thin-ground concrete scrap as a mineral additive in the composition of composite gypsum binder for cellular concrete is established in the work. Thermal insulation and structural cellular concrete of D600 and D700 grades are obtained. It is revealed that the stepwise loading of the components of the concrete mixture with the initial introduction of a gypsum binder is rational.


2020 ◽  
Vol 299 ◽  
pp. 287-292
Author(s):  
V.D. Tukhareli ◽  
E.E. Gnedash ◽  
A.V. Tukhareli

Heat-resistant properties of the cement stone are provided by both high-temperature filler and the modified matrix on the basis of the Portland cement. For production of heat-resistant compositions as high-temperature filler, it is offered to use the secondary and accompanying products of production of carbide of silicon (SiC) and production wastes of the abrasive tools on a ceramic base. Increase in heat-resistant properties of the Portland cement knitting substance is offered to be solved by introduction to the structure of a cement composition of single substituted orthophosphate of calcium. The choice as an additive to the Portland cement a single substituted orthophosphate of calcium (double superphosphate) is proved by questions of safety measures and ecology, when using ortho-phosphoric acid and its salts for giving to cement compositions heat-resistant properties. The multicomponent composition of fine-grained concrete makes it possible to operate effectively the processes of forming the structure of cement stone at all stages of the technology, and to obtain materials with the most diverse set of properties. An introduction to the structure of a composite of 5% of filler of cyclonic dust of carbide of silicon, and a replacement of quartz filler by waste of abrasive production gave the increase of the compressive strength at 12%, bending strength for 36%. The thermal firmness increased by 3 times. An introduction to the structure of heat-resistant composition of single substituted orthophosphate of calcium (double superphosphate) in a number of 0.2% of the mass of cement allowed to increase the thermal firmness of structures to 20 heat exchanges (water, 800 oС).


Sign in / Sign up

Export Citation Format

Share Document