scholarly journals Effect of initial temper on mechanical properties of creep-aged Al-Cu-Li alloy AA2050

2018 ◽  
Vol 190 ◽  
pp. 12006
Author(s):  
Yong Li ◽  
Yo-Lun Yang ◽  
Qi Rong ◽  
Zhusheng Shi ◽  
Jianguo Lin ◽  
...  

The evolution of mechanical properties of a third generation Al-Cu-Li alloy, AA2050, with different initial tempers (T34 and as-quenched (WQ)) during creep-ageing has been investigated and analysed in this study. A set of creep-ageing tests under 150 MPa at 155 °C for up to 24 h was carried out for both initial temper conditions and tensile tests were performed subsequently to acquire the main mechanical properties of the creep-aged alloys, including the yield strength, ultimate tensile strength (UTS) and uniform elongation. Precipitation behaviour of the T34 and WQ AA2050 alloys has been summarised and successfully explains the detailed evolutions of the obtained mechanical properties of the alloy with these two initial tempers during creep-ageing. The results indicate that the T34 alloy can be a better choice for creep age forming (CAF) process compared with WQ alloy, as it provides better yield strength and uniform elongation properties concurrently after creep-ageing. In addition, a work hardening rate analysis has been carried out for all the creep-aged alloys, helping to reveal the detailed dislocation/precipitates interaction mechanisms during plastic deformation in the creep-aged T34 and WQ AA2050 alloys.

2019 ◽  
Vol 6 ◽  
pp. 8
Author(s):  
Yong Li ◽  
Yo-Lun Yang ◽  
Qi Rong ◽  
Zhusheng Shi ◽  
Jianguo Lin ◽  
...  

The evolution of mechanical properties of a third-generation Al–Cu–Li alloy, AA2050, with different initial tempers (as-quenched WQ, naturally aged T34 and peak-aged T84) during creep-ageing has been investigated in this study. A set of creep-ageing tests was carried out under 150 MPa at 155 °C with different durations for all initial temper conditions and tensile tests were performed subsequently to acquire the main mechanical properties of the creep-aged alloys, including the yield strength, ultimate tensile strength and uniform elongation. The evolution of these mechanical properties during creep-ageing has been discussed in association with precipitation behaviour of AA2050 alloys with different initial tempers. The results indicate that the T34 alloy is the best choice for creep age forming (CAF) applications among these initial tempers, as it provides better yield strength and uniform elongation concurrently after creep-ageing. In addition, a work hardening rate analysis has been carried out for all the creep-aged alloys, helping to understand the detailed dislocation/precipitate interaction mechanisms during plastic deformation in the creep-aged AA2050 alloys with WQ, T34 and T84 initial tempers.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 489
Author(s):  
Sergio Elizalde ◽  
Marco Ezequiel ◽  
Ignacio A. Figueroa ◽  
José M. Cabrera ◽  
Chedly Braham ◽  
...  

The repetitive corrugation and straightening process is a severe plastic deformation technique that is particularly suited to process metallic sheets. With this technique, it is possible to develop nano/ultrafine-grained structured materials, and therefore, to improve some mechanical properties such as the yield strength, ultimate tensile strength, and fatigue lifetime. In this study, an Al-6061 alloy was subjected to the repetitive corrugation and straightening process. A new corrugation die design was proposed in order to promote a heterogeneous deformation into the metallic sheet. The evolution of the mechanical properties and microstructure obtained by electron backscatter diffraction of the alloy showed a heterogeneous distribution in the grain size at the initial cycles of the repetitive corrugation and straightening process. Uniaxial tensile tests showed a significant increase in yield strength as the number of repetitive corrugation and straightening passes increased. The distribution of the plastic deformation was correlated with the hardness distribution on the surface. The hardness distribution map matched well with the heterogeneous distribution of the plastic deformation obtained by finite element simulation. A maximum average hardness (147 HV) and yield strength (385 MPa) was obtained for two repetitive corrugation and straightening cycles sample.


2010 ◽  
Vol 667-669 ◽  
pp. 973-978
Author(s):  
L. Chen ◽  
Ping Jiang ◽  
Xiao Lei Wu ◽  
Mu Xin Yang ◽  
Chang Wang ◽  
...  

The nanostructure was obtained in a duplex stainless steel (DSS) by means of equal channel angular pressing. The mechanical properties were characterized by uniaxial tensile tests, while the microstructure was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was shown that the yield strength in a deformed nanostructure increased significantly from 402 MPa to 1461 MPa as compared to its coarse-grained counterpart. In contrast, the uniform elongation decreased significant to only 2% together with elongation to failure of 9.8%, much lower than those of 25.4% and 42.6%. After annealing at 700°C for 10 minute, however, uniform elongation increases to 5.3% with the yield strength of 1200 MPa. TEM observation exhibited that deformation twins prevail in the austenite phase whereas the dislocations of high density present in ferrite. The plastic behavior in both phases was analyzed based on the deformation twinning and the presence of dislocation. Finally, the effect of the microstructure on mechanical properties was discussed.


2018 ◽  
Vol 234 ◽  
pp. 04001 ◽  
Author(s):  
Veselin Tsonev ◽  
Nikolay Nikolov ◽  
Yordanka Marcheva

Studies show that although commonly used steels are standardized, some of their mechanical properties (such as tensile strength) vary widely and knowledge of their corrosion behavior is insufficient. Additional treatments, such as plastic deformation, alter the structure of carbon steels and affect their properties. This article explores one of the most widely used materials in mechanical and civil engineering - steel S235. Two types of rods, 6 mm in diameter, from hot-rolled non-alloy structural steel (S235JR, BDS EN 10025-2: 2005) and bright cold drawn steel (S235JRC, BDS EN 10277-2: 2008) have been tested. Tensile tests have been carried out, stress-strain curves are constructed and compared, the main mechanical properties such as yield strength, tensile strength and modulus of elasticity are determined. The typical consequences of plastic deformation such as increased yield strength have been identified. The assessment of corrosion behavior was done by means of the weight loss method in a 3,5% NaCl water solution for 5 weeks. It was found out that in the studied period the two types of rod exhibit close corrosion resistance, with the tendency for the cold drawn steel to have a higher uniform corrosion rate over a longer period.


Author(s):  
Aleksandra Towarek ◽  
Wojciech Jurczak ◽  
Joanna Zdunek ◽  
Mariusz Kulczyk ◽  
Jarosław Mizera

AbstractTwo model aluminium-magnesium alloys, containing 3 and 7.5 wt.% of Mg, were subjected to plastic deformation by means of hydrostatic extrusion (HE). Two degrees of deformation were imposed by two subsequent reductions of the diameter. Microstructural analysis and tensile tests of the materials in the initial state and after deformation were performed. For both materials, HE extrusion resulted in the deformation of the microstructure—formation of the un-equilibrium grain boundaries and partition of the grains. What is more, HE resulted in a significant increase of tensile strength and decrease of the elongation, mostly after the first degree of deformation.


2021 ◽  
Vol 1026 ◽  
pp. 65-73
Author(s):  
Kai Zhu ◽  
Hong Wei Yan

Both microstructure inhomogeneity and mechanical property diversity along the thickness direction in rolled thick aluminum plates have been considered to have a remarkable impact on the performance and properties of the products made from the plates. In this study, scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) characterizations of microstructure and texture types along the thickness directions of Al7055 thick plate specimens prepared using two conditions, hot-rolling and solution-quenching, were performed. To examine the mechanical properties, uniaxial tensile tests were also carried out on specimens machined from both types of thick plates, using a layered strategy along the thickness direction. The results indicate that both the microstructure and mechanical properties are inhomogeneous under the two conditions. Furthermore, it is evident that there is a hereditary relationship between the mechanical properties of the two plates—areas with higher yield strength in the as-hot-rolled plate correspond to areas with the higher yield strength in the as-solution-quenched plate


2006 ◽  
Vol 114 ◽  
pp. 171-176 ◽  
Author(s):  
Joanna Zdunek ◽  
Pawel Widlicki ◽  
Halina Garbacz ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

In this work, Al-Mg-Mn-Si alloy (5483) in the as-received and severe plastically deformed states was used. Plastic deformation was carried out by hydrostatic extrusion, and three different true strain values were applied 1.4, 2.8 and 3.8. All specimens were subjected to tensile tests and microhardness measurements. The investigated material revealed an instability during plastic deformation in the form of serration on the stress-strain curves, the so called Portevin-Le Chatelier effect It was shown that grain size reduction effected the character of the instability.


2002 ◽  
Vol 17 (1) ◽  
pp. 5-8 ◽  
Author(s):  
R. Z. Valiev ◽  
I. V. Alexandrov ◽  
Y. T. Zhu ◽  
T. C. Lowe

It is well known that plastic deformation induced by conventional forming methodssuch as rolling, drawing or extrusion can significantly increase the strength of metalsHowever, this increase is usually accompanied by a loss of ductility. For example, Fig.1 shows that with increasing plastic deformation, the yield strength of Cu and Almonotonically increases while their elongation to failure (ductility) decreases. Thesame trend is also true for other metals and alloys. Here we report an extraordinarycombination of high strength and high ductility produced in metals subject to severeplastic deformation (SPD). We believe that this unusual mechanical behavior is causedby the unique nanostructures generated by SPD processing. The combination ofultrafine grain size and high-density dislocations appears to enable deformation by newmechanisms. This work demonstrates the possibility of tailoring the microstructures ofmetals and alloys by SPD to obtain both high strength and high ductility. Materialswith such desirable mechanical properties are very attractive for advanced structuralapplications.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 762 ◽  
Author(s):  
Rub Nawaz Shahid ◽  
Sergio Scudino

Lightweight metal matrix composites are synthesized from elemental powder mixtures of aluminum and magnesium using pressure-assisted reactive sintering. The effect of the reaction between aluminum and magnesium on the microstructure and mechanical properties of the composites due to the formation of β-Al3Mg2 and γ-Al12Mg17 intermetallics is investigated. The formation of the intermetallic compounds progressively consumes aluminum and magnesium and induces strengthening of the composites: the yield and compressive strengths increase with the increase of the content of intermetallic reinforcement at the expense of the plastic deformation. The yield strength of the composites follows the iso-stress model when the data are plotted as a function of the intermetallic content.


2020 ◽  
Vol 2 (11) ◽  
Author(s):  
Juhani Laitila ◽  
Lassi Keränen ◽  
Jari Larkiola

AbstractIn this study, we present the effect of enhanced cooling on the mechanical properties of a high-strength low-alloy steel (having a yield strength of 700 MPa) following a single-pass weld process. The properties evaluated in this study include uniform elongation, impact toughness, yield, tensile and fatigue strengths alongside the cooling time of the weld. With the steel used in this study, the enhanced cooling resulted in a weld joint characterized with excellent cross-weld uniform elongation, yield and fatigue strength. The intensified cooling reduced the time it takes for the weld to reach 100 °C by around 190 s. Not only the fusion line of the weld was less pronounced, but also the grain size of the CGHAZ was greatly refined as a result of the enhanced cooling. The results indicate that combining external cooling to the welding processes can be beneficial for the studied high-strength steel.


Sign in / Sign up

Export Citation Format

Share Document