scholarly journals Application of high strength reinforcing bars in earthquake-resistant structure elements

2018 ◽  
Vol 195 ◽  
pp. 02015
Author(s):  
Kurniawan Setiadi Kamaruddin ◽  
Iswandi Imran ◽  
Maulana Derry Imansyah ◽  
Muhammad Riyansyah ◽  
Aris Ariyanto

Currently, design of reinforced concrete buildings is still dominated with normal strength reinforcing bars, not exceeding 420 MPa yield strength. Meanwhile, the use of higher strength reinforcing bars tend to increase due to some benefits in the construction, such as reducing the total weight of reinforcing bars and alleviating reinforcing bars congestions. In this study, reinforcing bars with yield strength of 520 MPa are utilized in the reinforced concrete beam-column joint. The objective is to study the seismic performance of reinforced concrete beam-column joints. A total of 3 interior beam-column joints, half-scaled specimens with different yield strengths and bar diameters was tested. One of the test specimens which was 16 mm diameter and had normal strength reinforcing bar. The other two specimens use high strength reinforcing bars, and have 16 mm and 19 mm diameter bars. Loading protocol of all the specimens is conformed with ACI 374.2. Dissipation energy and deformability of the joints is then compared. Normalized energy dissipation of the specimens with high strength reinforcing bars was slightly lower than that of the specimens with normal reinforcing bars. However, specimens with high strength reinforcing bars tend to have smaller deformability than that of the specimens with normal reinforcing bars.

2000 ◽  
Vol 27 (3) ◽  
pp. 490-505 ◽  
Author(s):  
Mostafa Elmorsi ◽  
M Reza Kianoush ◽  
W K Tso

A new finite element model for reinforced concrete beam-column joints is proposed. The model considers the effects of bond-slip and shear deformations in the joint panel region. The problems associated with modeling bond-slip of anchored reinforcing bars are discussed. The proposed bond-slip model is examined at the element level by comparing its predictions with other analytical and experimental results. The ability of the model to simulate bond deterioration and eventual pullout of anchored reinforcing bars under severe cyclic excitation is demonstrated. This model is incorporated into the global beam-column joint element. Further comparisons are made between the predictions of the proposed beam-column joint model and other analytical and experimental results under reversed cyclic loading to show the validity of the model to describe the bond-slip behavior of the joints.Key words: bond, bond-slip, finite element, beam-column, reinforced concrete, cyclic.


Author(s):  
R. Park ◽  
Ruitong Dai

Four beam-interior column Units were designed, constructed and tested subjected to simulated earthquake and gravity loading. One Unit followed the requirements of the New Zealand concrete design code NZS 3101:1982 for structures designed for ductility. The other three Units only partly followed the requirements of NZS 3101, in order to obtain information on the behaviour of beam-column joints of limited ductility. Plastic hinging was designed to occur in the beams. The major test variables were the quantity of horizontal and vertical shear reinforcement in the beam-interior column joint cores and the diameter of the beam longitudinal reinforcing bars passing through the joint cores. The test results indicted that the current NZS 3101 detailing requirements for shear and bond in the beam-interior column joint core regions of ductile reinforced concrete frames could be relaxed.


2021 ◽  
Vol 13 (6) ◽  
pp. 3482
Author(s):  
Seoungho Cho ◽  
Myungkwan Lim ◽  
Changhee Lee

High-strength reinforcing bars have high yield strengths. It is possible to reduce the number of reinforcing bars placed in a building. Accordingly, as the amount of reinforcement decreases, the spacing of reinforcing bars increases, workability improves, and the construction period shortens. To evaluate the structural performance of high-strength reinforcing bars and the joint performance of high-strength threaded reinforcing bars, flexural performance tests were performed in this study on 12 beam members with the compressive strength of concrete, the yield strength of the tensile reinforcing bars, and the tensile reinforcing bar ratio as variables. The yield strengths of the tensile reinforcement and joint methods were used as variables, and joint performance tests were performed for six beam members. Based on this study, the foundation for using high-strength reinforcing bars with a design standard yield strength equal to 600 MPa was established. Accordingly, mechanical joints of high-strength threaded reinforcing bars (600 and 670 MPa) can be used. All six specimens were destroyed under more than the expected nominal strength. Lap splice caused brittle fractures because it was not reinforced in stirrup. Increases of 21% to 47% in the loads of specimens using a coupler and a lock nut were observed. Shape yield represents destruction—a section must ensure sufficient ductility after yielding. Therefore, a coupler and lock nut are effective.


2003 ◽  
Vol 6 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Sayed A. Attaalla ◽  
Mehran Agbabian

The characteristics of the shear deformation inside the beam-column joint core of reinforced concrete frame structures subjected to seismic loading are discussed in this paper. The paper presents the formulation of an analytical model based on experimental observations. The model is intended to predict the expansions of beam-column joint core in the horizontal and vertical directions. The model describes the strain compatibility inside the joint in an average sense. Its predictions are verified utilizing experimental measurements obtained from tests conducted on beam-column connections. The model is found to adequately predict the components of shear deformation in the joint core and satisfactorily estimates the average strains in the joint hoops up to bond failure. The model may be considered as a simple, yet, important step towards analytical understanding of the sophisticated shear mechanism inside the joint and may be implemented in a controlled-deformation design technique of the joint.


2018 ◽  
Vol 21 (13) ◽  
pp. 1977-1989 ◽  
Author(s):  
Tengfei Xu ◽  
Jiantao Huang ◽  
Arnaud Castel ◽  
Renda Zhao ◽  
Cheng Yang

In this article, experiments focusing at the influence of steel–concrete bond damage on the dynamic stiffness of cracked reinforced concrete beams are reported. In these experiments, the bond between concrete and reinforcing bar was damaged using appreciate flexural loads. The static stiffness of cracked reinforced concrete beam was assessed using the measured load–deflection response under cycles of loading and unloading, and the dynamic stiffness was analyzed using the measured natural frequencies with and without sustained loading. Average moment of inertia model (Castel et al. model) for cracked reinforced beams by taking into account the respective effect of bending cracks (primary cracks) and the steel–concrete bond damage (interfacial microcracks) was adopted to calculate the static load–deflection response and the natural frequencies of the tested beams. The experimental results and the comparison between measured and calculated natural frequencies show that localized steel–concrete bond damage does not influence remarkably the dynamic stiffness and the natural frequencies both with and without sustained loading applied. Castel et al. model can be used to calculate the dynamic stiffness of cracked reinforced concrete beam by neglecting the effect of interfacial microcracks.


Structures ◽  
2019 ◽  
Vol 20 ◽  
pp. 353-364 ◽  
Author(s):  
Nassereddine Attari ◽  
Youcef Si Youcef ◽  
Sofiane Amziane

Sign in / Sign up

Export Citation Format

Share Document