scholarly journals Stress-strain behaviour of pre-stressed slabs of off-shuttering formation reinforced by carbon fiber

2018 ◽  
Vol 196 ◽  
pp. 02016 ◽  
Author(s):  
Denis Panfilov ◽  
Alexander Pischulev ◽  
Yuriy Zhiltsov

The paper presents calculations result of an assembled reinforced concrete hollow core slab of off-shuttering formation which has been reinforced with pre-stressed wire in its top and bottom areas reinforced with carbon fiber, in their turn. The research also examines the existing practice of using carbon fiber as reinforcement elements of reinforced concrete structures, existing specification documents regulating carbon fiber application of carbon in the Russian Federation as well as specification documents containing information about carbon fiber strength and stress-strain properties. The article contains the information on the scheme of loading, conditions of the slab fastening, geometrical characteristics of floor slab panels, physical characteristics of concrete and reinforcement of the experimental sample; technical characteristics of carbon reinforcement elements. The research results are represented as graphs of variance of construction deflections under loading in operating conditions of a slab wIth and without cracks before its reinforcement, and also in the moment of reinforcement. The research shows that using of carbon fiber to reinforce flexural elements with preliminary stress allows to increase rigidity and crack resistance of reinforced concrete elements.

Author(s):  
D. C. Kent ◽  
R. Park

The results of an investigation into the behaviour of reinforced concrete members subjected to cyclic loading in the inelastic
range are summarized. The investigation commences with studies of the Bauschinger effect for cyclically stressed mild steel reinforcement and the influence of rectangular steel hooping on the stress-strain behaviour of concrete. Using these derived stress-strain curves the moment-curvature relation ships for reinforced concrete members under cyclic loading are studied theoretically and compared with the results of a series of tests on reinforced concrete beams under cyclic loading.


Author(s):  
I.S. Bondar ◽  
◽  
Al Dulaimi Salman Dawood Salman ◽  
D.T. Aldekeyeva ◽  
R.S. Imambaeva ◽  
...  

The article examines field studies of reinforced concrete beams, fracture schemes, and the nature of the formation, development of cracks in reinforced concrete elements. Modeling the stress-strain state of reinforced concrete beams in the ANSYS software and computational complex, comparing the results of field and numerical studies. A method of finite element modeling of beams reinforced with fiber plastics (carbon fiber reinforced plastics) is proposed. A comparison of fracturing schemes obtained as a result of numerical simulation is presented.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 436
Author(s):  
Leonid Storozhenko ◽  
Pavlo Semko ◽  
Olena Yefimenko

Stress-strain state and compressed flexible steel-reinforced concrete elements resistance capacity are investigated in the work. The experiment program is complied and steel reinforced concrete elements calculations methods are analyzed. Experimental sample design drawings are shown. Raw materials physical and mechanical properties are determined. Steel reinforced-concrete elements experimental and research studies have been carried out. Coboundary dependences N-M for steel reinforced concrete elements construction method is proposed. Resistance capacity diagrams for steel reinforced concrete elements are constructed depending on the element height and the applied eccentricity.  


2016 ◽  
Vol 871 ◽  
pp. 173-181 ◽  
Author(s):  
Vasiliy Plevkov ◽  
Vyacheslav Belov ◽  
Igor Baldin ◽  
Andrey Nevskiy ◽  
Anatoliy Veselov ◽  
...  

The article reflects the results of experimental studies of carbon-fiber reinforced concrete under compression and tension. Qualitative change of concrete strength and stress-strain properties at its dispersed reinforcement with carbon fibers is fixed. As a result of the statistic processing of experimental data, analytical dependencies for determination of carbon-fiber reinforced concrete main strength and stress-strain characteristics under compression and tension are suggested. Calculation diagram of non-linear straining of carbon-fiber reinforced concrete at static effect is presented.


2018 ◽  
Vol 7 (3.9) ◽  
pp. 18
Author(s):  
Chee Loong Chin ◽  
Chau Khun Ma ◽  
Jia Yang Tan ◽  
Abdullah Zawawi Awang ◽  
Wahid Omar

External passive confinement has been used as strengthening scheme to rehabilitate existing reinforced concrete buildings. Passive confinement requires a certain lateral dilation of concrete prior to the activation of the confining effect. Applying pre-tensioned force to the confining material can eliminate the needs of such lateral dilation. This paper presents a review on previous studies conducted about pre-tensioned level in confined concrete. A short discussion is done based on the effect of pre-tensioned level to the three regions of stress-strain curve. It was found that pre-tensioned level affects the stress-strain behaviour of confined concrete. Pre-tensioned level that is too high decreases the strain capacity of the confined concrete. This review suggests that there exists an optimum pre-tensioned level for each confining material.  


2014 ◽  
Vol 984-985 ◽  
pp. 677-683
Author(s):  
T. Meena ◽  
G. Elangovan ◽  
R. Ganesh

Self-Compacting Concrete (SCC) is a highly flowable, self-levelling concrete. Just as in Fibre Reinforced Concrete (FRC), fibres can be incorporated into SCC also to get FRSCC. In the present study hybrid fibres namely, Polypropylene and hooked ended Steel fibres are incorporated in different volume fractions and their fresh and hardened state properties have been studied. Fly ash and Silica Fume obtained as waste from industries are used as replacement for cement, the replacement being 10% and 5% respectively. The behaviour of HFRSCC under compression, tension and flexure has been experimentally observed. The stress-strain behaviour of SCC and HFRSCC have also been studied by varying the combinations of volume fractions of hybrid fibres.


2020 ◽  
Vol 2 (1) ◽  
pp. 207-214
Author(s):  
Vasyl Karpiuk ◽  
Yuliia Somina ◽  
Oksana Maistrenko ◽  
Fedir Karpiuk

AbstractThe paper deals with the working peculiarities of the support zones of reinforced concrete elements subject to bending with due account of the eccentric compression and tension. The authors performed simulation of the stress-strain behaviour of the indicated structures with the aid of “Lira” software which results are shown in the graphical and tabulated form. The performed simulation allowed of tracing the work of the studied sample beams till collapse. Such approach made it possible to single out and generalize the main collapse patterns of the inclined cross-sections of the reinforced concrete elements subject to bending on which basis the authors developed the improved method to calculate their strength (Karpiuk et al., 2019).


2013 ◽  
Vol 668 ◽  
pp. 640-644 ◽  
Author(s):  
Xiao Chu Wang ◽  
Jun Wei Wang ◽  
Hong Tao Liu

In order to further investigate the stress-strain curve of carbon fiber reinforced concrete, the curve of stress-strain is used segmentation tabulators on the basis of the existing tests. Based on the axial compression experiments of 9 carbon fiber concrete reinforced samples filled with different carbon fiber admixture amounts, the theoretical calculating formula of the stress-strain curve with different admixture amounts was proposed, and the theoretical formula of calculation parameters and carbon fiber volume fraction was putted forward. The experimental results show that the calculation parameters of the stress-strain curve increases with the increase of the carbon fiber admixture amounts. The theoretical calculating formula of the peak strain and carbon fiber volume fraction, the compressive strength, and the calculated results agreed well with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document