scholarly journals Theoretical and experimental investigation of parametrically excited piezoelectric energy harvester

2018 ◽  
Vol 211 ◽  
pp. 02009
Author(s):  
Anshul Garg ◽  
Santosha K. Dwivedy

In the present work, a cantilever beam based piezoelectric energy harvester is investigated both theoretically and experimentally. The harvester is consists of a harmonically base excited vertical cantilever beam with a piezoelectric patch at the fixed end and a mass attached at an arbitrary position. The Euler-Bernoulli beam theory is applied considering the cantilever beam to be slender. The temporal nonlinear electromechanical governing equation of motion is obtained by using generalized Galerkin’s method considering two-mode approximation. Here for principal parametric resonance condition the steady state response of the voltage is obtained by using the method of multiple scales. The results are validated by developing an experimental setup of the harvester. For the harvester having a dimension of 295 mm×24 mm×7.6 mm, a maximum voltage of 40 V is obtained for a base motion of 9 mm with a frequency of 10.07 Hz when 15 gm mass is attached at a distance of 140 mm from the fixed end.

2019 ◽  
Vol 31 (4) ◽  
pp. 612-631 ◽  
Author(s):  
Anshul Garg ◽  
Santosha K Dwivedy

In the present work, both theoretical and experimental investigation of a vertical cantilever beam–based piezoelectric energy harvester are carried out under principal parametric resonance condition. A piezoelectric patch is attached near the fixed end of the cantilever beam along with an attached mass positioned at an arbitrary location. The extended Hamilton’s principle is used to derive the spatio-temporal equation of motion, and generalized Galerkin’s approximation is used to obtain the temporal nonlinear electromechanical governing equation of motion. The method of multiple scales is used to find the reduced modulation equations. Due to large transverse deflection and effect of rotary inertia of the attached mass, the system exhibits cubic and inertial nonlinearities. An experimental setup with slider crank mechanism–based shaker and a harvester consisting of a cantilever beam with piezoelectric patch and attached mass is designed and developed. The challenges posed by parametric resonance in crack development in the PZT and in the beam are reported. The theoretical and experimental output voltage and the power obtained are found to be in good agreement. Furthermore, a qualitative and quantitative comparative study of 17 energy harvesters has been carried out, and the normalized power densities have been compared.


Author(s):  
Wei-Jiun Su ◽  
Hsuan-Chen Lu

In this study, a dual-beam piezoelectric energy harvester is proposed. This harvester consists of a main beam and an auxiliary beam with a pair of magnets attached to couple their motions. The potential energy of the system is modeled to understand the influence of the potential wells on the dynamics of the harvester. It is noted that the alignment of the magnets significantly influences the potential wells. A theoretical model of the harvester is developed based on the Euler-Bernoulli beam theory. Frequency sweeps are conducted experimentally and numerically to study the dynamics of the harvester. It is shown that the dual-beam harvester can exhibit hardening effect with different configurations of magnet alignments in frequency sweeps. The performance of the harvester can be improved with proper placement of the magnets.


Author(s):  
Wei-Jiun Su ◽  
Jean W. Zu

Piezoelectric material has been widely utilized in vibration-based energy harvesters (VEH). The most common configuration of piezoelectric energy harvester is a cantilevered beam with unimorph or bimorph piezoelectric layers. In this paper, a new configuration of PEH is proposed. Two beams are assembled as V shape with tip masses attached. The first beam is a cantilevered beam with tip mass while the second beam is attached to the end of the first beam with a certain angle. Piezoelectric layers are attached to both beams in unimorph configuration for power generation. The analytical solution is derived based on Euler-Bernoulli beam theory. In this analysis, the angle varies from 0 to 135 degree to see the influence of angle on voltage and power frequency response. The V-shaped VEH is proven to have the second resonant frequency relatively close to the first resonant frequency when compared with conventional cantilevered VEH. Furthermore, the angle between the two beams will influence the ratio of the second to the first resonant frequency. By choosing a suitable angle, the V-shaped structure can effectively broaden the bandwidth.


Author(s):  
Xiaokun Ma ◽  
Christopher D. Rahn

Piezoelectric energy harvesters can be used to scavenge energy for unattended sensors in heating ventilation and air conditioning (HVAC) ducts. In this paper, an aeroelastic energy harvester using a pinned-pinned beam is designed, modeled, and analyzed. To obtain the desired model, we use nonlinear Euler-Bernoulli beam theory, a linear piezoelectric constitutive law, and nonlinear pressure dynamics. Compared with the traditional cantilever beam used by previous researchers, the pinned-pinned beam has a higher frequency limit cycle and more efficient mode shape, which ensure higher power output at the same strain level. The pinned-pinned boundary condition also self-limits the response amplitude, limiting strain in the piezoelectric beam and premature failure. Simulation results show that the pinned-pinned beam can harvest at least 4 times more average power than a cantilever beam with the same maximum strain.


2017 ◽  
Vol 29 (5) ◽  
pp. 800-815 ◽  
Author(s):  
S Srinivasulu Raju ◽  
M Umapathy ◽  
G Uma

Energy harvesting using cantilever-based piezoelectric structure is most popular for harvesting electrical energy from ambient vibrations. Efforts are also made to maximize the harvester power by means of tailoring the structural parameters of the cantilever beam. This article proposes a method to maximize the harvester voltage from the cantilever-based piezoelectric energy harvester by means of tailoring the structure of the cantilever, to have a tapering in width, thickness and in both width and thickness (double taper). It is also proposed to introduce rectangular and trapezoidal cavities in the tapered energy harvesters to further maximize the harvester voltage. The analytical model of the proposed harvesters is developed using Euler–Bernoulli beam theory, and its free vibration solution is analysed using Bessel functions. The energy harvesters are fabricated and experimentally evaluated for its performance. It is concluded from the results of analytical model and experimentation that width, thickness and double-tapered beam increases the harvester voltage by 35.6%, 84.8% and 126.6%, respectively, as compared to the energy harvester designed with uniform cantilever beam. Among all the energy harvesters proposed in this article, the maximum voltage is generated from the double-tapered beam with trapezoidal cavity. The experimental results are in close agreement with the results obtained from the analytical model.


Author(s):  
Wei-Jiun Su

In this paper, we proposed a Bi-directional U-shaped piezoelectric energy harvester that is capable of scavenging vibration energy in two orthogonal directions. The U-shaped harvester is a three-segment beam with piezoelectric layers attached. The harvester is designed to work in its first three resonant frequencies. A theoretical model of the harvester is derived based on the Euler-Bernoulli beam theory. The model is capable of simulating the electromechanical coupling system and obtaining the frequency responses under excitations of two orthogonal directions. The resonant frequencies of the harvester can be tuned by simply altering the length-to-width ratio of the beam structure. It is shown in the simulation that the U-shaped design can effectively harvest vibration energy in two directions of excitations.


Author(s):  
Amin Bibo ◽  
Abdessattar Abdelkefi ◽  
Mohammed F. Daqaq

This paper develops an experimentally validated model of a piezoelectric energy harvester under combined aeroelastic-galloping and base excitations. To that end, an energy harvester consisting of a thin piezoelectric cantilever beam subjected to vibratory base excitation is considered. To permit galloping excitation, a bluff body is rigidly attached at the free end such that a net aerodynamic lift is generated as the incoming airflow separates on both sides of the body giving rise to limit cycle oscillations when the flow velocity exceeds a critical value. A nonlinear electromechanical distributed-parameter model of the harvester under the combined excitation is derived using the energy approach and by adopting the nonlinear Euler-Bernoulli beam theory, linear constitutive relations for the piezoelectric transduction, and the quasi-steady assumption for the aerodynamic loading. The partial differential equations of the system are discretized and a reduced-order-model is obtained. The mathematical model is validated by conducting a series of experiments with different loading conditions represented by wind speed, base excitation amplitude, and excitation frequency around the primary resonance.


2015 ◽  
Vol 24 (4) ◽  
pp. 045006 ◽  
Author(s):  
Jedol Dayou ◽  
Jaehwan Kim ◽  
Jongbeom Im ◽  
Lindong Zhai ◽  
Aaron Ting Chuan How ◽  
...  

Author(s):  
Muhammad Masood Ahmad ◽  
Farid Ullah Khan

This paper presents an electromagnetic energy harvester to extract low frequency and low acceleration vibration energy available in a bridge environment. The developed harvester is a multi-mode oscillator with dual electromagnetic transduction mechanisms. The harvester consists of two cantilever beams. The first cantilever beam is split into two equal pieces along its length and the second beam placed in between them coming back to the fixed end and attached at outer end to the first beam. This way instead of a long conventional cantilever beam a compact harvester is fabricated. Two magnets as proof masses are attached to each free end of the beam making it a two degree of freedom system (2-DOF). The magnets are positioned to oscillate inside hand wound coils during operation. An analytical model was developed and COMSOL multiphysics was used to simulate the mode shapes of the harvester. The mathematical model was simulated for open circuit voltage in MATLAB and showed closely matching results with the experimental values. The harvester is characterized in lab for its performance under sinusoidal vibrations at low frequency (3 Hz–15 Hz) and low acceleration (0.01–0.09 g) levels. The 2-DOF harvester has two resonant frequencies of 4.4 Hz and 5.5 Hz and a volume of 333 cm3. It produces maximum voltage of 0.6 V at first resonance on coil-1 and maximum voltage of 1.2 V on coil-2 at second resonance at 0.09 g. At acceleration of 0.09 g the harvester produced 2.51 mW at first resonant frequency and 10.7 mW at second resonance. Moreover, the AC output voltage of the harvester is rectified to DC voltage by a three-stage Cockcroft-Walton multiplier type circuit. The DC power output at 0.05 g was 0.939 mW at first resonance and 0.956 mW at second resonance while maximum voltages of 5.4 V on coil-1 and 4 V on coil-2 were produced.


Sign in / Sign up

Export Citation Format

Share Document