scholarly journals Kinematic Synthesis of Mechanism for System with a Technical Vision

2018 ◽  
Vol 237 ◽  
pp. 03009
Author(s):  
Baurzhan Tultayev ◽  
Gani Balbayev ◽  
Algazy Zhauyt ◽  
Aidos Sultan ◽  
Aigerim Mussina

A solution to the problem of synthesizing an initial three-dimensional kinematic chain with spherical and rotary kinematic pairs is presented. It is shown that this chain can be used as a structural module for structural-kinematic synthesis of three-dimensional four-link motion generating lever mechanisms by the preset positions of the in-and output links. This paper affects the actual today’s problem of optimal synthesis of spatial link mechanisms. In this regard, the task of developing methods for the synthesis of complex spatial link mechanisms with the desired laws of motion of the input and output elements allowing automatizing the implementation of all design phases with the use of computer is quite relevant. The authors develop machine-oriented method of structural and kinematic synthesis of spatial link mechanisms based on the use of spatial initial kinematic chains (IKC) realizing prescribed motions. A new approach to the design of spatial mechanisms is suggested, according to which the design process is based on the kinematic synthesis of four-link initial kinematic chain (IKC) and associable kinematic chains (AKC).

Author(s):  
Todd J. Furlong ◽  
Judy M. Vance ◽  
Pierre M. Larochelle

Abstract This paper presents a new approach to using virtual reality (VR) to design spherical mechanisms. VR provides a three dimensional design space where a designer can input design positions using a combination of hand gestures and motions and view the resultant mechanism in stereo using natural head movement to change the viewpoint. Because of the three dimensional nature of the design and verification of spherical mechanisms, VR is examined as a new design interface in this research. In addition to providing a VR environment for design, the research presented in this paper has focused on developing a “design in context” approach to spherical mechanism design. Previous design methods have involved placing coordinate frames along the surface of a constraint sphere. The new “design in context” approach allows a designer to freely place geometric models of movable objects inside an environment consisting of fixed objects. The fixed objects could either act as a base for a mechanism or be potential sources of interference with the motion of the mechanism. This approach allows a designer to perform kinematic synthesis of a mechanism while giving consideration to the interaction of that mechanism with its application environment.


Author(s):  
Ting-Li Yang ◽  
Fang-Hua Yao

Abstract This paper presents a new viewpoint about structural composition of spatial kinematic chains; single-opened chains are regarded as basic structural units of mechanisms. The constraint characteristics (the constraint factors, Δj) of single-opened chains and the constraint characteristics (the coupled degree, κ and the κ-algorithm) of mechanical networks are presented. Thus a kinematic chain with ν independent loops is regarded to be composed of one basic link and ν single-opened chains in regular sequence. The above mentioned topological characteristics are used for setting up a new unified model for structural analysis and synthesis, kinematics and dynamics of spatial mechanisms.


Author(s):  
Ting-Li Yang ◽  
Fang-Hua Yao

Abstract Based on the single-opened chain constraints and the network topological characteristics of mechanisms, a powerful new method for structural synthesis of spatial kinematic chain with plane and nonplane linear graphs has been developed. This permits the development of a highly efficient and completely automatic program for the computer-generated enumeration of structural types of mechanisms. The method is illustrated by applying to the case of kinematic chains with up to six independent loops on a personal computer.


1999 ◽  
Vol 121 (4) ◽  
pp. 515-520 ◽  
Author(s):  
T. J. Furlong ◽  
J. M. Vance ◽  
P. M. Larochelle

This paper presents a new approach to using virtual reality (VR) to design spherical mechanisms. VR provides a three-dimensional (3-D) design space where a designer can input design positions using a combination of hand gestures and motions and view the resultant mechanism in stereo using natural head movement to change the viewpoint. Because of the three-dimensional nature of the design and verification of spherical mechanisms, VR is examined as a new design interface in this research. In addition to providing a VR environment for design, the research presented in this paper has focused on developing a “design in context” approach to spherical mechanism design. Previous design methods have involved placing coordinate frames along the surface of a constraint sphere. The new “design in context” approach allows a designer to freely place geometric models of movable objects inside an environment consisting of fixed objects. The fixed objects could either act as a base for a mechanism or be potential sources of interference with the motion of the mechanism. This approach allows a designer to perform kinematic synthesis of a mechanism while giving consideration to the interaction of that mechanism with its application environment.


1995 ◽  
Vol 62 (3) ◽  
pp. 725-732 ◽  
Author(s):  
D. B. Marghitu ◽  
Y. Hurmuzlu

This article deals with three-dimensional collisions of rigid, kinematic chains with an external surface while in contact with other surfaces. We concentrate on a special class of kinematic chain problems where there are multiple contact points during the impact process. A differential formulation based algorithm is used to obtain solutions that utilize the kinematic, kinetic, and the energetic definitions of the coefficient of restitution. Planar and spatial collisions of a three-link chain with two contact points are numerically studied to compare the outcomes predicted by each approach. Particular emphasis is placed on the relation between the post and pre-impact energies, slippage and rebounds at the contact points, and differences among planar and nearly planar three-dimensional solutions.


Author(s):  
Chieng-Liang Lai ◽  
Wei-Hua Chieng ◽  
David A. Hoeltzel

Abstract Traditional Euler-Lagrange methods for the dynamic analysis of kinematic chains require repetitive calculation of the kinematic constraints. This becomes very inefficient as the number of joints (or kinematic constraints) increases. This paper presents a new approach for the dynamic analysis of constrained dynamic systems. The salient feature of this approach is the separation of the kinematic analysis from the dynamic analysis. Following this separation, the resulting dynamic system becomes instantaneously unconstrained. While the discussion is mainly oriented towards the analysis of planar mechanisms, the model can be readily extended to the analysis of spatial mechanisms. A methodology for computer-aided symbolic derivation of the dynamic equations based on this approach is presented, and a numerical example which demonstrates a significant reduction in computing time for the dynamic analysis of a planar mechanism, as compared with conventional solution approaches, is provided.


Author(s):  
Win-Bin Shieh ◽  
Dar-Zen Chen ◽  
Yen-Chun Chen

Although the atlas of the geared kinematic chains (GKCs) had been enumerated decades ago, few studies had focused on how these synthesized GKCs can be applied according to the kinematic requirements of geared mechanisms in practice. In this paper, the kinematic behaviors of one-DOF, single-output geared mechanisms of up to six links are analyzed based on the concept of kinematic fractionation and the formulas of global gains are established. Classification of the geared mechanisms is obtained according to the gain types, ordinary, subtractive, fractional and composite. A set of rules for the assignment of ground, input and output links of single-KU and multiple-KU geared mechanisms without redundant links are proposed according to gain types. As a result, the kinematic synthesis of the one-DOF, single-output geared mechanisms of up to six links according to their associated gain types can be easily accomplished. An exemplary design of a geared mechanism with subtractive gain type is provided for the illustration of the proposed methodology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rui Zhai ◽  
Hui Chen ◽  
Zhihua Shan

AbstractElectrochemical modification of animal skin is a new material preparation method and new direction of research exploration. In this study, under the action of the electric field using NaCl as the supporting electrolyte, the effect of electrolysis on Glycyl-glycine(GlyGl), gelatin(Gel) and Three-dimensional rawhide collagen(3DC) were determined. The amino group of GlyGl is quickly eliminated within the anode region by electrolysis isolated by an anion exchange membrane. Using the same method, it was found that the molecular weight of Gel and the isoelectric point of the Gel decreased, and the viscosity and transparency of the Gel solution obviously changed. The electrolytic dissolution and structural changes of 3DC were further investigated. The results of TOC and TN showed that the organic matter in 3DC was dissolved by electrolysis, and the tissue cavitation was obvious. A new approach for the preparation of collagen-based multi-pore biomaterials by electrochemical method was explored.


2003 ◽  
Vol 14 (07) ◽  
pp. 945-954 ◽  
Author(s):  
MEHMET DİLAVER ◽  
SEMRA GÜNDÜÇ ◽  
MERAL AYDIN ◽  
YİĞİT GÜNDÜÇ

In this work we have considered the Taylor series expansion of the dynamic scaling relation of the magnetization with respect to small initial magnetization values in order to study the dynamic scaling behavior of two- and three-dimensional Ising models. We have used the literature values of the critical exponents and of the new dynamic exponent x0 to observe the dynamic finite-size scaling behavior of the time evolution of the magnetization during early stages of the Monte Carlo simulation. For the three-dimensional Ising model we have also presented that this method opens the possibility of calculating z and x0 separately. Our results show good agreement with the literature values. Measurements done on lattices with different sizes seem to give very good scaling.


Sign in / Sign up

Export Citation Format

Share Document