scholarly journals Stiffening material impact on the work of thin-walled element

2019 ◽  
Vol 252 ◽  
pp. 07009
Author(s):  
Katarzyna Falkowicz

The subject of research is a numerical analysis of a thin-walled plate with a cut-out and stiffening, made of laminate and subjected to axial compression. The plate was made of a carbon-epoxy composite - a laminate consisting of eight symmetrically oriented plies. The scope of the research included a linear and nonlinear numerical analysis using Finite Element Method (FEM). The main objective of the study was to investigate behaviour of the considered plate made of various stiffening materials, under quasi-static compression to achieve Tsai-Wu criterion. The numerical analysis was conducted with the Abaqus, commercial FEM software package.

2021 ◽  
pp. 49-54
Author(s):  
V.A. Ogorodov

Different ways of fixing of stepped thin-walled cylinders during honing are analyzed. The conditions for increasing the accuracy of hole machining are determined on the basis of unevenness of cylinder deformations from clamping forces and radial forces simulating cutting forces. The studies used the finite element method and the DEFORM-3D V6.1 software package. Keywords: honing, stepped thin-walled cylinder, hole, accuracy, fixing method, deformation, unevenness, DEFORM-3D V6.1 software package. [email protected]


2020 ◽  
Vol 50 (3) ◽  
pp. 333-357
Author(s):  
Janusz Ćwiklak

AbstractThe paper presents results of numerical analyses of the collision of various bird models (dummies) with a helicopter windshield. Three different numerical bird models were elaborated. According to the subject literature, applying an appropriate equation of state has an influence on impact parameters. The author used the LS_DYNA software package. This is a computational code designed to analyse fast-changing phenomena by means of the finite-element method. SPH method has been used for bird strike simulations. In the research, three different equations of state have been used: Grüneisen's, polynomial and tabulated.


2020 ◽  
Vol 54 (20) ◽  
pp. 2781-2801 ◽  
Author(s):  
Yousef Saadati ◽  
Gilbert Lebrun ◽  
Jean-Francois Chatelain ◽  
Yves Beauchamp

Using natural fibers as reinforcement in polymer matrix composites necessitates evaluating the latter under different modes of solicitation. This allows extracting its material properties for engineering design and research purposes. The main objective of the study is preparing a consistent set of material properties for unidirectional flax fiber-reinforced epoxy composite with defined composition and basic configuration. These data are prerequisites for growing researches on flax fiber-reinforced epoxy composites, especially for numerical analysis purposes using the finite element method. In this work, partially green unidirectional-flax fiber-reinforced epoxy composites are tested for physical and mechanical properties and studied for their failure modes. Tension, compression, flexion, and shear properties, as well as physical properties like density, specific heat capacity and thermal diffusivity, are evaluated according to ASTM standard test methods. Flax fibers, which are composites by themselves, come in bundles in the composites and demonstrate a complex behavior. Therefore, a fractographic analysis has been conducted to understand the macro and microscale failure mechanisms to correlate them with the material properties. The results are in good agreement with those of the literature, when available, but they mainly show the specific behavior of unidirectional-flax composites subject to different solicitation modes, especially compression and direct shear modes evaluated this way for the first time for unidirectional-flax fiber-reinforced epoxy composite. They cover most of the data required for engineering design and numerical analysis by methods like finite element method, particularly for simulating the machining process of flax fiber-reinforced epoxy composite in the ongoing works.


2017 ◽  
Vol 62 (4) ◽  
pp. 2267-2272 ◽  
Author(s):  
J. Michalczyk

Abstract The article presents a newly developed method for single-operation extrusion of conical radiators. This is the author’s radiator manufacturing method being the subject of a patent application. The proposed method enables the manufacture of radiators either with or without an inner opening and with an integral plate. Selected results of numerical computations made within Forge®3D, a finite element method (FEM)-based software program, were presented during the analysis of the process. A comparative analysis of the proposed manufacturing method using the double-sided extrusion method was also made. The proposed manufacturing method is assumed to produce radiators in a single technological operation with the stock material being standardized 30 mm-diameter aluminium bars. The objective of the developed method is also to reduce the energy-force parameters.


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Miguel Abambres

A 2nd order inelastic Generalised Beam Theory (GBT) formulation based on the J2 flow theory is proposed, being a promising alternative to the shell finite element method. Its application is illustrated for an I-section beam and a lipped-C column. GBT results were validated against ABAQUS, namely concerning equilibrium paths, deformed configurations, and displacement profiles. It was concluded that the GBT modal nature allows (i) precise results with only 22% of the number of dof required in ABAQUS, as well as (ii) the understanding (by means of modal participation diagrams) of the behavioral mechanics in any elastoplastic stage of member deformation .


2017 ◽  
Vol 54 (2) ◽  
pp. 195-202
Author(s):  
Vasile Nastasescu ◽  
Silvia Marzavan

The paper presents some theoretical and practical issues, particularly useful to users of numerical methods, especially finite element method for the behaviour modelling of the foam materials. Given the characteristics of specific behaviour of the foam materials, the requirement which has to be taken into consideration is the compression, inclusive impact with bodies more rigid then a foam material, when this is used alone or in combination with other materials in the form of composite laminated with various boundary conditions. The results and conclusions presented in this paper are the results of our investigations in the field and relates to the use of LS-Dyna program, but many observations, findings and conclusions, have a general character, valid for use of any numerical analysis by FEM programs.


Author(s):  
Haolei Mou ◽  
Zhenyu Feng ◽  
Jiang Xie ◽  
Jun Zou ◽  
Kun Zhou

AbstractTo analysis the failure and energy absorption of carbon fiber reinforced polymer (CFRP) thin-walled square tube, the quasi-static axial compression loading tests are conducted for [±45]3s square tube, and the square tube after test is scanned to further investigate the failure mechanism. Three different finite element models, i.e. single-layer shell model, multi-layer shell model and stacked shell mode, are developed by using the Puck 2000 matrix failure criterion and Yamada Sun fiber failure criterion, and three models are verified and compared according to the experimental energy absorption metrics. The experimental and simulation results show that the failure mode of [±45]3s square tube is the local buckling failure mode, and the energy are absorbed mainly by intralaminar and interlaminar delamination, fiber elastic deformation, fiber debonding and fracture, matrix deformation cracking and longitudinal crack propagation. Three different finite element models can reproduce the collapse behaviours of [±45]3s square tube to some extent, but the stacked shell model can better reproduce the failure mode, and the difference of specific energy absorption (SEA) is minimum, which shows the numerical simulation results are in better agreement with the test results.


Sign in / Sign up

Export Citation Format

Share Document