scholarly journals Synthesis of Silver Doped Titanium Dioxide by Wet-Ball Milling Sol–Gel Method for Antibacterial Application

2021 ◽  
Vol 333 ◽  
pp. 11002
Author(s):  
Tippabust Eksangsri ◽  
Chaweewan Sapcharoenkun ◽  
Siripond Phromma

Titanium dioxide (TiO2) has been extensively studied as photo-catalyst for water treatment, air purification and antibacterial applications due to its challenging properties such as chemical stability, environmental friendly and strong photocatalytic activity. However, the limitation of TiO2 on its dependent to ultraviolet radiation for photocatalytic activity is still aroused. In this study, silver doped titanium dioxide (Ag-TiO2) was synthesized by wet-ball milling sol–gel method (WBMS). Ag-TiO2 molar ratio was varied from 0% to 10% to study the effect of silver content on the synthesized Ag-TiO2 characteristics and the ability to apply on antibacterial applications. The objective of this work was to find an optimal concentration of Ag in Ag-TiO2. Characterization of the particle size, morphology, and surface area of synthesized Ag-TiO2 were discussed by techniques of transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET). Photocatalytic activity was investigated from degradation of methylene blue. Antibacterial activity was conducted by finding minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests performed on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) under dark condition and under visible light. The results demonstrated that the doping of Ag inhibited crystal growth of Ag-TiO2. The smallest particle size and the highest surface area were obtained from 5% Ag-TiO2. Also, it was found that methylene blue degradation rate increased to the highest number of 1.62x10−3 min−1 when Ag concentration reached 5%, and methylene blue degradation rate reduced when Ag concentration was higher than 5%. The antibacterial activity of Ag-TiO2 was better than TiO2. The optimal concentration of 3-5% Ag-TiO2 was observed from the MIC and MBC tests.

2013 ◽  
Vol 295-298 ◽  
pp. 447-451 ◽  
Author(s):  
De Qiang Chen ◽  
Yang Li ◽  
Yi Qun Chen

In this paper graphene is used to improve absorption rate of nano-titanium dioxide under visible light, meanwhile titanium dioxide is doped with superparamagnetism nano-powder of γ-Fe2O3 to modify the recovery of the photocatalyst. Gradually the increasing content of grapheme promotes the removal efficiency and correspondingly. Excitation condition is reduced and the photocatalysis property under visible light is improved and recycle rate of the titanium dioxide is effective promoted after the dispose. The effect of photocatalytic degradation of methylene blue is used to evaluate the photocatalytic activity. The methylene blue degradation rate raised from 53.4% to 85.9% with the increasing graphene load from 5% to 20% under visible light. The degradation efficiency of methylene blue decreased to 15% without the graphene load. The recovery rate of the photocatalyst can achieve 95% above. Graphene oxide works as the electron acceptor and photosensitizer to efficiently enhance the dye photodecomposition.


RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25314-25324 ◽  
Author(s):  
Lin Xiao ◽  
Li Youji ◽  
Chen Feitai ◽  
Xu Peng ◽  
Li Ming

A highly efficient and elaborately structured visible-light-driven catalyst composed of mesoporous TiO2 (MT) doped with Ag+-coated graphene (MT-Ag/GR) has been successfully fabricated by a sol–gel and solvothermal method.


2021 ◽  
Vol 12 (2-2021) ◽  
pp. 214-218
Author(s):  
S. A. Safaryan ◽  
◽  
M. L. Belikov ◽  
V. A. Krysanova ◽  
◽  
...  

The article presents the results of the studies of the physicochemical and photocatalytic properties of titanium dioxide modified with manganese, by the example of decomposition of organic dyes — ferroin and methylene blue. The correlations between the specific surface area and phase composition of the composites with their photocatalytic activity are revealed.


2020 ◽  
Vol 8 (1) ◽  
pp. 51-60
Author(s):  
Sheilla Rully Anggita ◽  

This research has successfully deposited ZnO: Ag on aluminum foil substrates with variations in deposition temperature. The purpose of this study was to obtain the surface morphology of ZnO:Ag on aluminum foil substrates with variations in deposition temperature and obtain optimization of the photocatalytic activity of ZnO: Ag in degrading Methylene Blue dyes. ZnO:Ag deposition on the aluminum foil substrate was carried out by the sol-gel method and spray coating deposition technique. Surface morphology characterization and photocatalytic activity with SEM and with UV-Vis. The surface morphology results obtained from ZnO:Ag on aluminum foil substrate with deposition temperatures of 250 ℃, 300 ℃, 350 ℃, and 400 ℃ are the forms of ganglia with indications as ZnO and Ag grains attached to ZnO. Obtained surface area and roughness level ZnO:Ag decreases with an increase in temperature from 250 ℃ - 300 ℃, and surface area and roughness increases at 350 ℃ -400 ℃. The highest level of roughness is found in the ZnO layer: Ag temperature 400 ℃. The most optimum photocatalytic activity is indicated by the largest percentage of degradation. The highest percentage of degradation is shown by the ZnO: Ag layer with a temperature of 350 ℃ of 87.33%. This is due to the modification of silver at low temperatures which is <400 ℃ effective for photocatalytic activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Abdul Rahman ◽  
M. T. M. Ayob ◽  
S. Radiman

ZnO nanowhiskers were used for photodecomposition of methylene blue in aqueous solution under UV irradiation. The rate of methylene blue degradation increased linearly with time of UV irradiation. 54% of degradation rate was observed when the ZnO nanowhiskers were used as photocatalysts for methylene blue degradation for 80 min under UV irradiation. The decoration of p-type NiO nanoparticles on n-type ZnO nanowhiskers significantly enhanced photocatalytic activity and reached 72% degradation rate of methylene blue by using the same method. NiO-decorated ZnO was recycled for second test and shows 66% degradation from maximal peak of methylene blue within the same period. The increment of photocatalytic activity of NiO-decorated ZnO nanowhiskers was explained by the extension of the electron depletion layer due to the formation of nanoscale p-n junctions between p-type NiO and n-type ZnO. Hence, these products provide new alternative proficient photocatalysts for wastewater treatment.


2013 ◽  
Vol 773 ◽  
pp. 912-916
Author(s):  
Yong Mei Liu ◽  
Zhuan Nian Liu ◽  
Xiao Gang Han

nanoTiO2photocatalyst modified by N and Fe3+ion were loaded on fly ash forming adsorbent (FFA) using the sol-gel dip-coating technique. The structure and properties of the samples were characterized by UV-Vis spectrum, SEM and XRD. The related influencing factors were also discussed. The results showed that modified TiO2was immobilized on the surface of FFA in the form of nanocrystalline and an apparent absorption peak appears in the visible region of photocatalyst doped with N,Fe ion. Moreover, under visible light irradiation for 6h, the degradation rate of 50mg/L of methylene blue by loaded catalyst reached 92.6 %.


2018 ◽  
Vol 54 (2A) ◽  
pp. 164
Author(s):  
Nguyen Tan Lam

This paper presents a study on preparation of sulfur doped titanium dioxide using potassium fluorotitanate and sodium sulfate as precursors. The obtained results indicated that the doped TiO2 exhibited very high photocatalytic activity for degradation of methylene blue even under visible light. The increasing in the added sulfur amounts led to significantly increase in the degradation of methylene blue. When the S/TiO2 mole ratios increased from 10 to 25%, the degradation of methylene blue under compact light increased from 30.87% to 67.06%, respectively.


2013 ◽  
Vol 774-776 ◽  
pp. 864-867
Author(s):  
Zai Feng Shi ◽  
Su Min Zhang ◽  
Su Guo

To investigate the effects of sol pH value and water content on photocatalytic activity of TiO2 prepared with sol-gel auto-igniting synthesis (SAS) method, TiO(NO3)2 was prepared with TiCl4 as raw material and used as precursor of TiO2. By changing sol pH value and water content, different TiO2 powders were prepared and characterized with XRD, SEM and photodegradation of methylene blue (MB). Results indicated that TiO2 presented the highest photocatalytic activity while sol pH value and mass fraction of water were adjusted to 7 and 50% respectively while the mole ratio of n (TiCl4): n (citric acid): n (ammonium nitrate) was fixed as 1: 1: 3. The TiO2 powders were confirmed as loose and porous anatase type with particle size of 15 nm by SEM and XRD.


Sign in / Sign up

Export Citation Format

Share Document