scholarly journals Mathematical model of an electric car to diagnose its traction qualities on a chassis dynamometer

2021 ◽  
Vol 341 ◽  
pp. 00030
Author(s):  
Aleksandr Fedotov ◽  
Oleg Yan’kov ◽  
Anton Chernyshkov

The paper outlines the developed mathematical model of an electric vehicle to control its traction and dynamic qualities on a chassis dynamometer. The purpose of the work is to expand the capabilities of diagnostics and analytical determination of electric vehicle dynamics parameters. The developed mathematical model includes descriptions of the following processes: the operation of the electric motor, torsional vibrations in the transmission of an electric car and the chassis dynamometer, the processes of tires interaction with the circular-shaped surfaces of the chassis dynamometer.

2020 ◽  
Vol 19 (1) ◽  
pp. 63-75
Author(s):  
R. Dorofeev ◽  
A. Tumasov ◽  
A. Sizov ◽  
A. Kocherov ◽  
A. Meshkov ◽  
...  

The paper describes the process and results of the development of the light commercial electric vehicle. In order to ensure maximum energy efficiency of the developed vehicle the key parameters of the original electric motor. The article also presents the results of power electronic thermal calculation. For the mathematical model of the vehicle, the driving cycle parameters of the electric platform were determined in accordance with UNECE Regulations No 83, 84. The driving cycle was characterized by four successive urban and suburban cycles. The mathematical model also takes into account the time phases of the cycle, which include idling, vehicle idling, acceleration, constant speed movement, deceleration, etc. The model of the electric part of the vehicle was developed using MatLab-Simulink (SimPowerSystems library) in addition to the mechanical part of the electric car. The electric part included the asynchronous electric motor, the motor control system and the inverter. This model at the output allows to obtain such characteristics of the electric motor as currents, flows and voltages of the stator and rotor in a fixed and rotating coordinate systems, electromagnetic moment, angular speed of rotation of the motor shaft. The developed model allowed to calculate and evaluate the performance parameters of the electric vehicle. Technical solutions of the electric vehicle design were verified by conducting strength calculations. In conclusion, the results of field tests of a commercial electric vehicle are presented.


2021 ◽  
Vol 7 (1) ◽  
pp. 29-35
Author(s):  
German V. Nedugov

Background: The constancy of the ambient temperature is the main condition to correctly determine the time of death by thermometric method. However, in practice, this requirement is met only in cases of death in closed rooms. In this study, an exponential mathematical model was proposed for corpse cooling under any changes in ambient temperature. Aim: This study aimed to develop a mathematical model to determine the time of death based on the NewtonRichman cooling law in changing ambient temperature conditions. Materials and methods: Mathematical modeling of corpse cooling under changing ambient temperature is performed, focusing on problem solving of thermometric determination of the time of death. The axillary hollow was used as the diagnostic zone of the corpse, and the temperature of which at the time of death is taken is 36.6С. Results: A method of reverse reproduction of the cadaver temperature in conditions of changing ambient temperature has been developed. Results allow a relatively simple analytical determination of the time of death in the early postmortem period. Conclusions: The proposed method is advisable to be used in forensic medical practice to determine the time of death in early postmortem period. The developed mathematical model is implemented in the format of the application program Warm Bodies NRN. Use of tympanic and intraocular thermometry was recommended within the proposed model.


2012 ◽  
Vol 165 ◽  
pp. 114-119 ◽  
Author(s):  
Md M. Ridzuan ◽  
A. Alias ◽  
Nik N.I. Rumzi

This is a preliminary research in energy optimization system (ENOS) for Electric Vehicle (EV) whereby eco-driving is one of the solutions. Eco-driving initiative is not only benefit to the environment by optimizing the energy consumption but also enhancing the propulsion performance of Electric Vehicle. The efforts to reduce energy consumption could be achieved directly by studying contributing factors from the propulsion characteristic and the behavior of the vehicle dynamics (longitudinal vehicle dynamics in particular). We derived a single expression to describe energy consumption which could be programmed as the eco-driving algorithm. The expression is started by developing sets of equation of motions of longitudinal vehicle dynamics and relates them with the propulsion behavior that includes the counter-force by the traction torque and battery management system for Electric Vehicle. This mathematical model is established to analyze the energy consumption which shows the parameters that are important in the strategy to acquire the optimal performance and efficiency. This whole effort is part of the strategy to develop algorithm for eco-driving program.


2021 ◽  
Vol 4 (1) ◽  
pp. 120
Author(s):  
Purnawan Purnawan ◽  
Casnan Casnan ◽  
Arief Kurniawan ◽  
Ananda Riski

The study's objectives were to: determine the type of Brushless Direct Current (BLDC) motor that is right for an electric car drive system with a capacity of one passenger, and Knowing the capacity of the BLDC motor used as an electric car drive system with a capacity of one passenger. This research uses Research and Development (R&D) level 1. The research subjects taken are students and lecturers of Vocational Education, Automotive Technology and Electrical Engineering, Ahmad Dahlan University, totalling eight students four lecturers. Ahmad Dahlan University " AL-QORNI " electric car is planned to use an electric motor type Brushless Direct Current (BLDC) with a capacity of 2000 watts which works with a voltage of 49 volts - 96 volts.


Author(s):  
Oleksandr Gryshchuk ◽  
Volodymyr Hladchenko ◽  
Uriy Overchenko

This article looks at some comparative statistics on the development and use of electric vehicles (hereinafter referred to as EM) as an example of sales and future sales forecasts for EM in countries that focus on environmental conservation. Examples of financial investments already underway and to be made in the near future by the largest automakers in the development and distribution of EM in the world are given. Steps are taken to improve the environmental situation in countries (for example, the prohibition of entry into the city center), the scientific and applied problem of improving the energy efficiency and environmental safety of the operation of wheeled vehicles (hereinafter referred to as the CTE). The basic and more widespread schemes of conversion of the internal combustion engine car (hereinafter -ICE) to the electric motor car (by replacing the gasoline or diesel electric motor), as well as the main requirements that must be observed for the safe use and operation of the electric vehicle. The problem is solved by justifying the feasibility of re-equipment of the KTZ by replacing the internal combustion engine with an electric motor. On the basis of the statistics collected by the State Automobile Transit Research Institute on the number of issued conclusions of scientific and technical expertise regarding the approval of the possibility of conversion of a car with an internal combustion engine (gasoline or diesel) to a car with an electric motor (electric vehicle), the conclusions on the feasibility of such conclusion were made. Keywords: electricvehicles, ecological safety, electricmotor, statistics provided, car, vehicle by replacing.


Author(s):  
Olexandr Pavlenko ◽  
Serhii Dun ◽  
Maksym Skliar

In any economy there is a need for the bulky goods transportation which cannot be divided into smaller parts. Such cargoes include building structures, elements of industrial equipment, tracked or wheeled construction and agricultural machinery, heavy armored military vehicles. In any case, tractor-semitrailer should provide fast delivery of goods with minimal fuel consumption. In order to guarantee the goods delivery, tractor-semitrailers must be able to overcome the existing roads broken grade and be capable to tow a semi-trailer in off-road conditions. These properties are especially important for military equipment transportation. The important factor that determines a tractor-semitrailer mobility is its gradeability. The purpose of this work is to improve a tractor-semitrailer mobility with tractor units manufactured at PJSC “AutoKrAZ” by increasing the tractor-semitrailer gradeability. The customer requirements for a new tractor are determined by the maximizing the grade to 18°. The analysis of the characteristics of modern tractor-semitrailers for heavy haulage has shown that the highest rate of this grade is 16.7°. The factors determining the limiting gradeability value were analyzed, based on the tractor-semitrailer with a KrAZ-6510TE tractor and a semi-trailer with a full weight of 80 t. It has been developed a mathematical model to investigate the tractor and semi-trailer axles vertical reactions distribution on the tractor-semitrailer friction performances. The mathematical model has allowed to calculate the gradeability value that the tractor-semitrailer can overcome in case of wheels and road surface friction value and the tractive force magnitude from the engine. The mathematical model adequacy was confirmed by comparing the calculations results with the data of factory tests. The analysis showed that on a dry road the KrAZ-6510TE tractor with a 80 t gross weight semitrailer is capable to climb a gradient of 14,35 ° with its coupling mass full use condition. The engine's maximum torque allows the tractor-semitrailer to overcome a gradient of 10.45° It has been determined the ways to improve the design of the KrAZ-6510TE tractor to increase its gradeability. Keywords: tractor, tractor-semitrailer vehicle mobility, tractor-semitrailer vehicle gradeability.


Sign in / Sign up

Export Citation Format

Share Document