scholarly journals How to tell the story of change and transition of the energy, ecological and societal systems

2020 ◽  
Vol 108 (5-6) ◽  
pp. 502
Author(s):  
Jean-Pierre Birat

After overusing the expression Sustainable Development, some action plan was needed to switch from rhetorical to transformational change. One of the answers was to propose the word Transition as a roadmap leading to the necessary level of change. A Transition is a passage from one stable regime to another, with a step that is neither instantaneous nor dangerous, like a Revolution, but is fast enough, anyway. The first Transition in the 2010s was the Energy Transition, i.e. a move towards less fossil fuels and more renewables. It started everywhere more or less at the same time, but Germany and its Energiewende was among the first contenders. The implicit objective was as much to control excessive anthropogenic GHG emissions as it was to possibly start a new period of growth based on green technologies. Very soon, however, the Fukushima disaster convinced Mrs. Merkel to change tack and veer towards “zero nuclear power”, thus aligning with the program of the Green movements. At that point, the Energiewende had become a complex, multi-objectives program for change, not a simple Transition as described at the onset of the paper. The rest of the world turned to Globish and spoke of the Energy Transition (EnT). Each country added a layer of complexity to its own version of the EnT and told a series of narratives, quite different from each other. This is analyzed in the present article on the basis of the documents prepared by the “energy-community”, which assembles hard scientists and economists, a group that the soft scientists of SSH call STEM. EnT, in its most recent and mature version, hardly speaks of energy any more but of GHG emissions. Therefore, EnT drifted towards the expression Ecological Transition (EcT). Both expressions are almost synonymous today. From then on, myriads similar expressions sprang up: Environmental Transition, Demographic, Epidemiological and Environmental Risk Transition, Societal Transitions, Global Transitions, Economic Transition, Sustainability Transition, Socio-Ecological Transitions, Technology Transitions, Nutrition Transition, Agro-Ecological Transition, Digital Transition, Sanitary Transition as well as various practices like Energy Democracy or Theory of Transition. Focusing only on EnT and EcT, a first step consists in comparing energy technologies from the standpoint of their impact on public health: thus, coal is 2 or 3 orders of magnitude worse than renewable energy, not to speak of nuclear. A second step looks at the materials requirement of Renewables, what has been called the materials paradox. They are more materials-intensive and also call on much larger TMRs (Total Materials Requirement). On the other hand, the matter of critical materials has been blown out of proportion and is probably less out of control than initially depicted. A third step is accomplished by Historians, who show that History is full of energy transitions, which did not always go in one direction and did not always match the storytelling of progress that the present EnT is heavily relying on. Moreover, they flatly reject the long-term storytelling of History depicted as a continuous string of energy transitions, from biomass, to coal, oil, gas, nuclear and nowadays renewables. Just as interesting is the opinion of the Energy-SSH community. They complain that the organizations that control research funds and decision makers listen mainly to the STEM-energy community rather than to them. And they go on to explain, sometimes demonstrate, that this restricts the perspective, over-focuses on certain technologies and confines SSH to an ancillary role in support of projects, the strategy of which is decided without their input: the keyword is asymmetry of information, which therefore leads to distortion of decision-making. They also stress the need for a plurality of views and interpretations, a possible solution to the societal deadlocks often encountered in Europe. As important and strategic as energy issues are in our present world, the hubris of both STEM and SSH communities may be excessive. Some level of success in making them work together may be a way to resolve this situation!

Significance LNG is cleaner than most fossil fuels but still incompatible with net zero emissions. India, China and other Asian economies see LNG imports as a ready and economically viable means of displacing coal and oil use. Natural gas and then LNG demand will eventually peak as the energy transition accelerates over the next 20 years. Impacts LNG market growth will embed fossil fuel use and infrastructure in developing economies’ energy mixes. Recent market volatility and record spot LNG prices may reverse the trend of greater reliance on spot transactions than long-term contracts. Although the greenhouse gas (GHG) benefits of LNG use in transport are far from clear, it will gain market share in the next few years. LNG project developers will seek to cut GHG emissions from their projects to prolong LNG's attractiveness in the energy transition.


MRS Bulletin ◽  
2010 ◽  
Vol 35 (11) ◽  
pp. 859-866 ◽  
Author(s):  
Rodney C. Ewing ◽  
Wolfgang Runde ◽  
Thomas E. Albrecht-Schmitt

The resurgence of nuclear power as a strategy for reducing greenhouse gas (GHG) emissions has, in parallel, revived interest in the environmental impact of actinides. Just as GHG emissions are the main environmental impact of the combustion of fossil fuels, the fate of actinides, consumed and produced by nuclear reactions, determines whether nuclear power is viewed as an environmentally “friendly” source of energy. In this article, we summarize the sources of actinides in the nuclear fuel cycle, how actinides are separated by chemical processing, the development of actinide-bearing materials, and the behavior of actinides in the environment. At each stage, actinides present a unique and complicated behavior because of the 5f electronic configurations.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8394
Author(s):  
Mariusz Niekurzak

Thanks to the allocation methods, i.e., the division of the total GHG emissions between each of the products generated in the production of biofuels, it is possible to reduce the emissions of these gases by up to 35% in relation to the production and combustion of fuels derived from crude oil. As part of this study, the biodiesel production process was analyzed in terms of greenhouse gas (GHG) emissions. On the basis of the obtained results, the key factors influencing the emissions level of the biodiesel production process were identified. In order to assess the sensitivity of the results of the adopted allocation method, this study included calculations of GHG emissions with an allocation method based on mass, energy, and financial shares. The article reviews recent advances that have the potential to enable a sustainable energy transition, a green economy, and carbon neutrality in the biofuels sector. The paper shows that the technology used for the production of biodiesel is of great importance for sustainable development. The possibility of using renewable raw materials for the production of fuels leads to a reduction in the consumption of fossil fuels and lower emission of pollutants. It showed that during the combustion of biodiesel, the percentages of released gas components, with the exception of nitrogen oxides, which increased by 13%, were significantly lower: CO2—78%, CO—43%, SO2—100%, PM10—32%, and volatile hydrocarbons—63%. Moreover, it was found that biodiesel undergoes five times faster biodegradation in the environment than diesel oil.


2021 ◽  
Vol 156 (A1) ◽  
Author(s):  
S E Hirdaris ◽  
Y F Cheng ◽  
P Shallcross ◽  
J Bonafoux ◽  
D Carlson ◽  
...  

The authors are to be congratulated on a well- researched and timely technical paper. I am pleased to express my personal opinion on the subject. COSCO was intending to initiate a study in December 2009 on nuclear powered ship design in order to reduce GHG emissions from shipping. However, this plan was aborted three years after, following the catastrophic accident at the Fukushima nuclear power station in Japan during March 2011. This intensified political and public opposition to nuclear power to the extent that Germany has since adopted plans to decommission its entire nuclear infrastructure. However, confidence is beginning to re- emerge - confidence which I share. With increasing attention being given to GHG emissions arising from burning fossil fuels for global aviation and marine transport, together with the excellent safety record of nuclear power in the marine environment and the development of the new generation of SMRs, it is quite conceivable that renewed attention will be given to the application of nuclear power in merchant ship propulsion. In producing this paper, the authors have made a significant contribution in the field of innovative ship design development. They have demonstrated the feasibility of applying the latest generation of nuclear reactor to commercial ship propulsion. Whereas nuclear power has been widely used in vessels of a number of navies and icebreakers, it has yet to be adopted for commercial ships other than a small number of research projects. This paper has provided good rationale for accommodating nuclear power in merchant shipping including speed and range requirements, required specific volume on board, environmental considerations etc. The study has also considered the risks associated with design and the arrangement of nuclear systems including location of the SMR, type of propulsion options and other safety- critical issues, not least the radiological risk to persons on board, involved in maintenance and in port.


2018 ◽  
Vol 40 (2) ◽  
pp. 91-105
Author(s):  
Herbert Wibert Victor Hasudungan

This paper investigates the environmental and economic impacts of introducing the CO2 taxation on carbon-based fuels using a detailed disaggregation of energy-economy-environmental CGE model for Indonesia. The carbon tax has yet to be implemented in Indonesia. However, this instrument has been considered in the Ministry of Finance report as one of the governments fiscal strategic framework to finance the countrys action plan in commitments to reduce the GHG emissions. Suppose that the government levies the tax of Rp. 100,000/ton CO2e under two possible revenue-recycling scenarios: the carbon tax revenue is recycled through a reduction of labour income tax rate or an increase of government spending on commodities. For comparison purpose, we also implement the non-compensated scenario of which the additional revenue from carbon tax is kept as government savings to run budget surplus. Overall, the results suggested that the carbon tax reduces the national emissions but adding more costs to the economy,resulting a fall in GDP. In terms of income distribution, the carbon tax tends to be progressive in both scenarios of revenue-recycling. However, when there is no compensating mechanism, the carbon tax tends to be regressive - the poorer households carry a higher share of the carbon tax burden.


2020 ◽  
Vol 42 (4) ◽  
pp. 67-73
Author(s):  
T.A. Zheliezna

The aim of the work is to analyze targets on the transition to 100% renewable energy sources (RES) existing in different countries of the world as well as strategies for their achievement. The task of the work is to identify the most promising directions and develop appropriate recommendations for Ukraine. The global trend is setting targets for the transition to 100% RES, at least in some energy sectors, developing appropriate strategies and their implementation. Over the last decade, the cost of renewable energy has been steadily declining, making RES more competitive with fossil fuels in many parts of the world. Today, more than 50 countries, hundreds of cities and regions in one form or another have committed to switching to 100% RES. Most often it is about achieving 100% of renewable electricity. So far, at least 52 cities and regions have achieved their targets for the transition to 100% RES. Of these, 41 are located in Europe and 9 are located in the United States. About 2/3 of these targets relate only to renewable electricity. In Ukraine, the official targets for the development of RES are set out in the National Renewable Energy Action Plan until 2020 and in the Energy Strategy of Ukraine until 2035. Recently, a draft Concept of the “green” energy transition of Ukraine until 2050 was developed, which sets the goal of achieving a climate-neutral economy by 2070. One of the main directions of decarbonization of the economy is the development of RES in combination with increasing energy efficiency and energy saving. It is necessary to resume completing the document with the inclusion of reasonable long-term goals to achieve 100% RES in certain energy sectors and in the whole energy balance of Ukraine.


2020 ◽  
Vol 42 (3) ◽  
pp. 5-22
Author(s):  
A.A. Khalatov ◽  
N.M. Fialko ◽  
M.P. Tymchenko

In the context of the energy transition, the impact on the energy security of Ukraine of the global threat of depletion of the main types of fossils of traditional energy resources is analyzed. The peculiarities of FER consumption in the recent period in the world as a whole, in the EU and in Ukraine are considered. It points to the fundamental difference in the dynamics of consumption of fossil fuels in the world as a whole and in the EU. The data concerning the proved world reserves of traditional energy resources and terms of their exhaustion are given. Estimates of fossil fuels own stocks in Ukraine are presented and prospects of their use are considered. It is indicated that the development of nuclear energy in Ukraine is promising (as one of the directions of decarbonization of energy in the French interpretation) given the significant world geological reserves of various uranium isotopes. At the same time, it is noted that hybrid technologies of nuclear power deserve special attention.


Author(s):  
Jørgen Delman

China’s leadership is in the middle of overseeing a green transition of the Chinese energy system that aims to replace fossil fuels with clean energy. To move the energy transition ahead, there has been an acute need to continuously develop and adapt guiding policies and regulatory frameworks to stimulate the development of green technologies, complex reform solutions, and appropriate institutions. The responsible Chinese authorities and energy policy actors have chosen to collaborate with international partners to do this. They see Denmark as a best-practice learning case, and through a strategic government-to-government partnership, Denmark has gradually become one of China’s preferred strategic policy interlocutors on energy politics. This chapter examines the role of international policy learning and policy translation in energy policy design in China. It elaborates an analytical model to guide the analysis of policy translation practices, which views policy translation as a process of pragmatic, interactional, adaptive, solution-oriented collaborative efforts that combine a variety of tools to translate foreign energy policy meanings into Chinese energy politics.


Author(s):  
Kathleen Araújo

The world is at a pivotal crossroad in energy choices. There is a strong sense that our use of energy must be more sustainable. Moreover, many also broadly agree that a way must be found to rely increasingly on lower carbon energy sources. However, no single or clear solution exists on the means to carry out such a shift at either a national or international level. Traditional energy planning (when done) has revolved around limited cost projections that often fail to take longer term evidence and interactions of a wider set of factors into account. The good news is that evidence does exist on such change in case studies of different nations shifting toward low-carbon energy approaches. In fact, such shifts can occur quite quickly at times, alongside industrial and societal advance, innovation, and policy learning. These types of insights will be important for informing energy debates and decision-making going forward. Low Carbon Energy Transitions: Turning Points in National Policy and Innovation takes an in-depth look at four energy transitions that have occurred since the global oil crisis of 1973: Brazilian biofuels, Danish wind power, French nuclear power, and Icelandic geothermal energy. With these cases, Dr. Araújo argues that significant nationwide shifts to low-carbon energy can occur in under fifteen years, and that technological complexity is not necessarily a major impediment to such shifts. Dr. Araújo draws on more than five years of research, and interviews with over 120 different scientists, government workers, academics, and members of civil society in completing this study. Low Carbon Energy Transitions is written for for professionals in energy, the environment and policy as well as for students and citizens who are interested in critical decisions about energy sustainability. Technology briefings are provided for each of the major technologies in this book, so that scientific and non-scientific readers can engage in more even discussions about the choices that are involved.


2021 ◽  
Vol 13 (13) ◽  
pp. 7025
Author(s):  
Shiva Gorjian ◽  
Behnam Hosseingholilou ◽  
Laxmikant D. Jathar ◽  
Haniyeh Samadi ◽  
Samiran Samanta ◽  
...  

The food industry is responsible for supplying the food demand of the ever-increasing global population. The food chain is one of the major contributors to greenhouse gas (GHG) emissions, and global food waste accounts for one-third of produced food. A solution to this problem is preserving crops, vegetables, and fruits with the help of an ancient method of sun drying. For drying agricultural and marine products, several types of dryers are also being developed. However, they require a large amount of energy supplied conventionally from pollutant energy sources. The environmental concerns and depletion risks of fossil fuels persuade researchers and developers to seek alternative solutions. To perform drying applications, sustainable solar power may be effective because it is highly accessible in most regions of the world. Greenhouse dryers (GHDs) are simple facilities that can provide large capacities for drying agricultural products. This study reviews the integration of GHDs with different solar technologies, including photovoltaic (PV), photovoltaic-thermal (PVT), and solar thermal collectors. Additionally, the integration of solar-assisted greenhouse dryers (SGHDs) with heat pumps and thermal energy storage (TES) units, as well as their hybrid configuration considering integration with other renewable energy sources, is investigated to improve their thermal performance. In this regard, this review presents and discusses the most recent advances in this field. Additionally, the economic analysis of SGHDs is presented as a key factor to make these sustainable facilities commercially available.


Sign in / Sign up

Export Citation Format

Share Document