scholarly journals In a pig model ePTFE grafts will sustain for 6 weeks a confluent endothelial cell layer formed in vitro under shear stress conditions

2003 ◽  
Vol 26 (2) ◽  
pp. 156-160 ◽  
Author(s):  
R. Büttemeyer ◽  
J.W. Mall ◽  
M. Paulitschke ◽  
A. Rademacher ◽  
A.W. Philipp
Author(s):  
Skadi Lau ◽  
Yue Liu ◽  
Anna Maier ◽  
Steffen Braune ◽  
Manfred Gossen ◽  
...  

AbstractIn vitro thrombogenicity test systems require co-cultivation of endothelial cells and platelets under blood flow-like conditions. Here, a commercially available perfusion system is explored using plasma-treated cyclic olefin copolymer (COC) as a substrate for the endothelial cell layer. COC was characterized prior to endothelialization and co-cultivation with platelets under static or flow conditions. COC exhibits a low roughness and a moderate hydrophilicity. Flow promoted endothelial cell growth and prevented platelet adherence. These findings show the suitability of COC as substrate and the importance of blood flow-like conditions for the assessment of the thrombogenic risk of drugs or cardiovascular implant materials. Graphic abstract


Circulation ◽  
2013 ◽  
Vol 128 (1) ◽  
pp. 50-59 ◽  
Author(s):  
Karin I. Pappelbaum ◽  
Christian Gorzelanny ◽  
Sandra Grässle ◽  
Jan Suckau ◽  
Matthias W. Laschke ◽  
...  

1986 ◽  
Vol 83 (7) ◽  
pp. 2114-2117 ◽  
Author(s):  
P. F. Davies ◽  
A. Remuzzi ◽  
E. J. Gordon ◽  
C. F. Dewey ◽  
M. A. Gimbrone

1994 ◽  
Vol 74 (2) ◽  
pp. 85-93 ◽  
Author(s):  
Toshiyuki Kaji ◽  
Syouichi Hiraga ◽  
Noriyasu Fujii ◽  
Chika Yamamoto ◽  
Michiko Sakamoto ◽  
...  

1991 ◽  
Vol 260 (6) ◽  
pp. H1992-H1996 ◽  
Author(s):  
H. Jo ◽  
R. O. Dull ◽  
T. M. Hollis ◽  
J. M. Tarbell

Altered permeability of vascular endothelium to macromolecules may play a role in vascular disease as well as vascular homeostasis. Because the shear stress of flowing blood on the vascular wall is known to influence many endothelial cell properties, an in vitro system to measure transendothelial permeability (Pe) to fluorescein isothiocyanate conjugated bovine serum albumin under defined physiological levels of steady laminar shear stress was developed. Bovine aortic endothelial cells grown on polycarbonate filters pretreated with gelatin and fibronectin constituted the model system. Onset of 1 dyn/cm2 shear stress resulted in a Pe rise from 5.1 +/- 1.3 x 10(-6) cm/s to 21.9 +/- 4.6 X 10(-6) cm/s at 60 min (n = 6); while 10 dyn/cm2 shear stress increased Pe from 4.8 +/- 1.5 X 10(-6) cm/s to 50.2 +/- 6.8 X 10(-6) cm/s at 30 min and 49.6 +/- 8.9 X 10(-6) cm/s at 60 (n = 9). Pe returned to preshear values within 120 and 60 min after removal of 1 and 10 dyn/cm2 shear stress, respectively. The data show that endothelial cell Pe in vitro is acutely sensitive to shear stress.


1981 ◽  
Author(s):  
M A Gimbrone ◽  
C F Dewey ◽  
P F Davies ◽  
S R Bussolari

The vascular endothelial lining in vivo is constantly subjected to hemodynamic shear stresses resulting from normal and altered patterns of blood flow. To facilitate the study of effects of fluid shear stress on endothelial cell structure and function, we have developed an in vitro system, utilizing a cone-plate apparatus, to subject coverslip cultures of bovine aortic endothelial cells (BAEC) to controlled levels of shear (up to 102 dynes/cm2) in either laminar or turbulent flow. The magnitude and direction of shear stress within the system are accurately known from both theory and experimental measurements. The data reported here are for laminar flow. Subconfluent BAEC cultures continuously exposed to 1-5 dynes/cm2 shear proliferated at a rate comparable to that of static cultures, and postconfluent monolayers appeared unaltered morphologically for up to 1 week. In contrast, BAEC cultures (both postconfluent and subconfluent) exposed to 8 dynes/cm2 developed dramatic, time-dependent morphological changes. By 48 hrs, cells uniformly assumed an ellipsoidal configuration, with their major axes aligned in the direction of flow. Exposure to >10 dynes/cm2 caused variable cell detachment from plain glass substrates. Cellular migration into linear “wounds”, created in confluent areas, was influenced by both the direction and amplitude of applied shear. Exposure to 8 dynes/ cm2 induced functional alterations, including increased fluid (bulk phase) endocytosis, prostaglandin production and platelet reactivity. These observations indicate that fluid mechanical forces can directly influence endothelial cell structure and function. Hemodynamic modulation of endothelial cell behavior may be relevant to normal vessel wall physiology, as well as the pathogenesis of atherosclerosis and thrombosis.


Sign in / Sign up

Export Citation Format

Share Document