scholarly journals Noncanonical Action of Thyroid Hormone Receptors α and β

2020 ◽  
Vol 128 (06/07) ◽  
pp. 383-387
Author(s):  
G. Sebastian Hönes ◽  
Daniela Geist ◽  
Lars C. Moeller

AbstractThyroid hormone (TH) is essential for the regulation of many physiological processes, especially growth, organ development, energy metabolism and cardiovascular effects. TH acts via the TH receptors (TR) α and β. By binding to thyroid hormone responsive elements (TREs) on the DNA, TRs regulate expression of TH target genes. Thus, TRs are mainly characterized as ligand dependent transcription factors and regulation of gene expression and protein synthesis is considered the canonical mode of TH/TR action. The demonstration that the ligand-bound TRs α and β also mediate activation of the phosphatidylinositol-3-kinase (PI3K) pathway established noncanonical TH/TR action as an additional mode of TH signaling. Recently, TR mutant mouse models allowed to determine the underlying mode of TH/TR action, either canonical or noncanonical TH/TR signaling, for several physiological TH effects in vivo: Regulation of the hypothalamic-pituitary-thyroid axis requires DNA-binding of TRβ, whereas hepatic triglyceride content appears to be regulated by noncanonical TRβ signaling. TRα mediated effects in bone development are dependent on DNA-binding, whereas several cardiovascular TRα effects are rapid and independent from DNA-binding. Therefore, noncanonical TH/TR action contributes to the overall effects of TH in physiology.

1991 ◽  
Vol 11 (10) ◽  
pp. 5005-5015
Author(s):  
M A Lazar ◽  
T J Berrodin ◽  
H P Harding

Binding of the thyroid hormone receptor (TR) to thyroid hormone-responsive elements (TREs) is crucial for regulation of gene expression by thyroid hormone. The TR binds to each half-site of a palindromic TRE separately, as a monomer, or simultaneously, as a homodimer. In addition, the TR monomer interacts with a 42-kDa protein that may be responsible for an increase in the apparent size and stability of the TR-TRE complex after incubation with liver nuclear extract. The multiple DNA-binding forms of the TR contact the TRE differently but compete for binding in a dynamic equilibrium which is highly dependent on the relative concentrations of TR and nuclear protein. Thus, protein-protein interactions are likely to determine the context in which the TR binds to target genes and regulates the transcriptional response to thyroid hormone.


1991 ◽  
Vol 11 (10) ◽  
pp. 5005-5015 ◽  
Author(s):  
M A Lazar ◽  
T J Berrodin ◽  
H P Harding

Binding of the thyroid hormone receptor (TR) to thyroid hormone-responsive elements (TREs) is crucial for regulation of gene expression by thyroid hormone. The TR binds to each half-site of a palindromic TRE separately, as a monomer, or simultaneously, as a homodimer. In addition, the TR monomer interacts with a 42-kDa protein that may be responsible for an increase in the apparent size and stability of the TR-TRE complex after incubation with liver nuclear extract. The multiple DNA-binding forms of the TR contact the TRE differently but compete for binding in a dynamic equilibrium which is highly dependent on the relative concentrations of TR and nuclear protein. Thus, protein-protein interactions are likely to determine the context in which the TR binds to target genes and regulates the transcriptional response to thyroid hormone.


2017 ◽  
Vol 114 (52) ◽  
pp. E11323-E11332 ◽  
Author(s):  
G. Sebastian Hönes ◽  
Helena Rakov ◽  
John Logan ◽  
Xiao-Hui Liao ◽  
Eugenie Werbenko ◽  
...  

Thyroid hormone (TH) and TH receptors (TRs) α and β act by binding to TH response elements (TREs) in regulatory regions of target genes. This nuclear signaling is established as the canonical or type 1 pathway for TH action. Nevertheless, TRs also rapidly activate intracellular second-messenger signaling pathways independently of gene expression (noncanonical or type 3 TR signaling). To test the physiological relevance of noncanonical TR signaling, we generated knockin mice with a mutation in the TR DNA-binding domain that abrogates binding to DNA and leads to complete loss of canonical TH action. We show that several important physiological TH effects are preserved despite the disruption of DNA binding of TRα and TRβ, most notably heart rate, body temperature, blood glucose, and triglyceride concentration, all of which were regulated by noncanonical TR signaling. Additionally, we confirm that TRE-binding–defective TRβ leads to disruption of the hypothalamic–pituitary–thyroid axis with resistance to TH, while mutation of TRα causes a severe delay in skeletal development, thus demonstrating tissue- and TR isoform-specific canonical signaling. These findings provide in vivo evidence that noncanonical TR signaling exerts physiologically important cardiometabolic effects that are distinct from canonical actions. These data challenge the current paradigm that in vivo physiological TH action is mediated exclusively via regulation of gene transcription at the nuclear level.


2016 ◽  
Vol 113 (24) ◽  
pp. E3451-E3460 ◽  
Author(s):  
Elvira Alonso-Merino ◽  
Rosa Martín Orozco ◽  
Lidia Ruíz-Llorente ◽  
Olaia A. Martínez-Iglesias ◽  
Juan Pedro Velasco-Martín ◽  
...  

TGF-β, the most potent profibrogenic factor, acts by activating SMAD (mothers against decapentaplegic) transcription factors, which bind to SMAD-binding elements in target genes. Here, we show that the thyroid hormone triiodothyronine (T3), through binding to its nuclear receptors (TRs), is able to antagonize transcriptional activation by TGF-β/SMAD. This antagonism involves reduced phosphorylation of SMADs and a direct interaction of the receptors with SMAD3 and SMAD4 that is independent of T3-mediated transcriptional activity but requires residues in the receptor DNA binding domain. T3 reduces occupancy of SMAD-binding elements in response to TGF-β, reducing histone acetylation and inhibiting transcription. In agreement with this transcriptional cross-talk, T3 is able to antagonize fibrotic processes in vivo. Liver fibrosis induced by carbon tetrachloride is attenuated by thyroid hormone administration to mice, whereas aged TR knockout mice spontaneously accumulate collagen. Furthermore, skin fibrosis induced by bleomycin administration is also reduced by the thyroid hormones. These findings define an important function of the thyroid hormone receptors and suggest TR ligands could have beneficial effects to block the progression of fibrotic diseases.


2003 ◽  
Vol 31 (1) ◽  
pp. 9-20 ◽  
Author(s):  
O Chassande

Thyroid hormone (TH) is required for the development of vertebrates and exerts numerous homeostatic functions in adults. TH acts through nuclear receptors which control the transcription of target genes. Unliganded and liganded thyroid hormone receptors (TRs) have been shown to exert opposite effects on the transcription of target genes in vitro. However, the occurance of an aporeceptor activity in vivo and its potential physiological significance has not been clearly addressed. Several data generated using experimental hypothyroidism and thyrotoxicosis in wild type and TR knockout mice support the notion that apoTRs have an intrinsic activity in several tIssues. ApoTRs, and in particular TRalpha1, are predominant during the early stages of vertebrate development and must be turned into holoTRs for post-natal development to proceed normally. However, the absence of striking alterations of embryonic and fetal development in mice devoid of TRs indicates that apoTRs do not play a fundamental role. During development, as well as in adults, apoTRs rather appears as a system which increases the range of transcriptional responses to moderate variations of T3.


2000 ◽  
Vol 14 (7) ◽  
pp. 947-955 ◽  
Author(s):  
Xu Feng ◽  
Yuan Jiang ◽  
Paul Meltzer ◽  
Paul M. Yen

Abstract The liver is an important target organ of thyroid hormone. However, only a limited number of hepatic target genes have been identified, and little is known about the pattern of their regulation by thyroid hormone. We used a quantitative fluorescent cDNA microarray to identify novel hepatic genes regulated by thyroid hormone. Fluorescent-labeled cDNA prepared from hepatic RNA of T3-treated and hypothyroid mice was hybridized to a cDNA microarray, representing 2225 different mouse genes, followed by computer analysis to compare relative changes in gene expression. Fifty five genes, 45 not previously known to be thyroid hormone-responsive genes, were found to be regulated by thyroid hormone. Among them, 14 were positively regulated by thyroid hormone, and unexpectedly, 41 were negatively regulated. The expression of 8 of these genes was confirmed by Northern blot analyses. Thyroid hormone affected gene expression for a diverse range of cellular pathways and functions, including gluconeogenesis, lipogenesis, insulin signaling, adenylate cyclase signaling, cell proliferation, and apoptosis. This is the first application of the microarray technique to study hormonal regulation of gene expression in vivo and should prove to be a powerful tool for future studies of hormone and drug action.


1996 ◽  
Vol 16 (1) ◽  
pp. 219-227 ◽  
Author(s):  
F X Claret ◽  
T Antakly ◽  
M Karin ◽  
F Saatcioglu

Thyroid hormone (T3) receptors (T3Rs) are ligand-modulated transcription factors that bind to thyroid hormone response elements (T3REs) and mediate either positive or negative transcriptional regulation of target genes. In addition, in response to ligand binding, T3Rs can interfere with AP-1 activity and thereby inhibit transcription of AP-1-responsive genes. T3Rs were recently shown to form heterodimers with retinoid X receptors (RXRs), leading to increased binding to T3REs in vitro and potentiation of transcriptional responses in vivo. Here we demonstrate that T3R alpha forms stable heterodimers with RXR alpha in living cells. Most important, we describe a new role for RXR alpha in modulating ligand-dependent T3R alpha activity: heterodimerization with RXR alpha greatly increases transcriptional interference with AP-1 activity, augments T3-dependent transcriptional activation, and potentiates the reversal of ligand-independent activation by T3R alpha. In all three cases, the responses occur at substantially lower T3 concentrations when elicited by T3R alpha plus RXR alpha than by T3R alpha alone. In vitro, the binding of T3 decreases the DNA-binding activity of T3R alpha homodimers but does not affect DNA binding by T3R alpha:RXR alpha heterodimers. We provide evidence that increased activities of T3R alpha at lower T3 concentrations are not due to changes in its T3 binding properties. Instead, the altered response could be mediated by either RXR alpha-induced conformational changes, increased stability of heterodimers over homodimers, especially following T3 binding, or both.


2005 ◽  
Vol 25 (13) ◽  
pp. 5712-5724 ◽  
Author(s):  
Bindu Diana Paul ◽  
Liezhen Fu ◽  
Daniel R. Buchholz ◽  
Yun-Bo Shi

ABSTRACT Thyroid hormone receptors (TRs) can repress or activate target genes depending on the absence or presence of thyroid hormone (T3), respectively. This hormone-dependent gene regulation is mediated by recruitment of corepressors in the absence of T3 and coactivators in its presence. Many TR-interacting coactivators have been characterized in vitro. In comparison, few studies have addressed the developmental roles of these cofactors in vivo. We have investigated the role of coactivators in transcriptional activation by TR during postembryonic tissue remodeling by using amphibian metamorphosis as a model system. We have previously shown that steroid receptor coactivator 3 (SRC3) is expressed and upregulated during metamorphosis, suggesting a role in gene regulation by liganded TR. Here, we have generated transgenic tadpoles expressing a dominant negative form of SRC3 (F-dnSRC3). The transgenic tadpoles exhibited normal growth and development throughout embryogenesis and premetamorphic stages. However, transgenic expression of F-dnSRC3 inhibits essentially all aspects of T3-induced metamorphosis, as well as natural metamorphosis, leading to delayed or arrested metamorphosis or the formation of tailed frogs. Molecular analysis revealed that F-dnSRC3 functioned by blocking the recruitment of endogenous coactivators to T3 target genes without affecting corepressor release, thereby preventing the T3-dependent gene regulation program responsible for tissue transformations during metamorphosis. Our studies thus demonstrate that coactivator recruitment, aside from corepressor release, is required for T3 function in development and further provide the first example where a specific coactivator-dependent gene regulation pathway by a nuclear receptor has been shown to underlie specific developmental events.


2021 ◽  
Vol 9 (1) ◽  
pp. 6
Author(s):  
Narendra Pratap Singh ◽  
Bony De Kumar ◽  
Ariel Paulson ◽  
Mark E. Parrish ◽  
Carrie Scott ◽  
...  

Knowledge of the diverse DNA binding specificities of transcription factors is important for understanding their specific regulatory functions in animal development and evolution. We have examined the genome-wide binding properties of the mouse HOXB1 protein in embryonic stem cells differentiated into neural fates. Unexpectedly, only a small number of HOXB1 bound regions (7%) correlate with binding of the known HOX cofactors PBX and MEIS. In contrast, 22% of the HOXB1 binding peaks display co-occupancy with the transcriptional repressor REST. Analyses revealed that co-binding of HOXB1 with PBX correlates with active histone marks and high levels of expression, while co-occupancy with REST correlates with repressive histone marks and repression of the target genes. Analysis of HOXB1 bound regions uncovered enrichment of a novel 15 base pair HOXB1 binding motif HB1RE (HOXB1 response element). In vitro template binding assays showed that HOXB1, PBX1, and MEIS can bind to this motif. In vivo, this motif is sufficient for direct expression of a reporter gene and over-expression of HOXB1 selectively represses this activity. Our analyses suggest that HOXB1 has evolved an association with REST in gene regulation and the novel HB1RE motif contributes to HOXB1 function in part through a repressive role in gene expression.


2008 ◽  
Vol 411 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Kyung-Chul Choi ◽  
So-Young Oh ◽  
Hee-Bum Kang ◽  
Yoo-Hyun Lee ◽  
Seungjoo Haam ◽  
...  

A central issue in mediating repression by nuclear hormone receptors is the distinct or redundant function between co-repressors N-CoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptor). To address the functional relationship between SMRT and N-CoR in TR (thyroid hormone receptor)-mediated repression, we have identified multiple TR target genes, including BCL3 (B-cell lymphoma 3-encoded protein), Spot14 (thyroid hormone-inducible hepatic protein), FAS (fatty acid synthase), and ADRB2 (β-adrenergic receptor 2). We demonstrated that siRNA (small interfering RNA) treatment against either N-CoR or SMRT is sufficient for the de-repression of multiple TR target genes. By the combination of sequence mining and physical association as determined by ChIP (chromatin immunoprecipitation) assays, we mapped the putative TREs (thyroid hormone response elements) in BCL3, Spot14, FAS and ADRB2 genes. Our data clearly show that SMRT and N-CoR are independently recruited to various TR target genes. We also present evidence that overexpression of N-CoR can restore repression of endogenous genes after knocking down SMRT. Finally, unliganded, co-repressor-free TR is defective in repression and interacts with a co-activator, p300. Collectively, these results suggest that both SMRT and N-CoR are limited in cells and that knocking down either of them results in co-repressor-free TR and consequently de-repression of TR target genes.


Sign in / Sign up

Export Citation Format

Share Document