Protective Role of EGCG Against Malathion Induced Genotoxicity Using Human Lymphocytes

Drug Research ◽  
2020 ◽  
Vol 70 (08) ◽  
pp. 360-366
Author(s):  
Seyed Mousa Taghavi ◽  
Amir Shadboorestan ◽  
Samin Sabzevari ◽  
Maryam Gholami ◽  
Razieh Keshavarz-maleki ◽  
...  

AbstractBackground: Green tea (Camellia sinensis), which is the most common drink across the world after water, has many antioxidant properties. Epigallocatecin-3-gallate (EGCG) is a flavonoid which accounts for 33–50% of green tea solids. It functions as a powerful antioxidant, preventing oxidative damage in healthy cells, with antiangiogenic and antitumor activities and as a modulator of tumor cell response to chemotherapy. Malathion is an organophosphate pesticide which is widely used in agriculture, veterinary and industries. Oxidative stress has been identified as one of malathion’s main molecular mechanisms. The purpose of this study was to evaluate protective role of EGCG against malathion induced genotoxicity using human lymphocyte model. Blood samples from 8 non-smoker healthy volunteers with no history of chemotherapy were collected and divided into six groups: Control, EGCG (50 µM), EGCG (20 µM), Malathion (24 µM), EGCG (50 µM)+Malathion (24 µM) and EGCG (20 µM)+Malathion (24 µM). For genotoxicity assay, we employed micronuclei test. For antioxidant capacity evaluation, GSH content and MDA levels were measured. Malathion showed significant genotoxic damage compared to the intact lymphocytes, however, treatment with EGCG at both concentrations were reduced the genotoxic effect of malathion. Malathion induced lipid peroxidation, while pre-treatment with EGCG at both concentrations, significantly protected the lymphocytes against malathion induced lipid peroxidation. Malathion significantly reduced GSH content, but pre-treatment with EGCG significantly recovered GSH content. Overall this study demonstrated that EGCG (at both concentrations) significantly prevents human lymphocytes against malathion induced genotoxicity and oxidative damage.

2016 ◽  
Vol 5 (1) ◽  
pp. 42-45 ◽  
Author(s):  
Zadkhosh Nahid ◽  
Heidary Shayesteh Tavakol ◽  
Ghafori Khosroshahi Abolfazl ◽  
Mosavi Leila ◽  
Mehri Negar ◽  
...  

2000 ◽  
Vol 48 (9) ◽  
pp. 3973-3978 ◽  
Author(s):  
Tullia Gallina Toschi ◽  
Alessandra Bordoni ◽  
Silvana Hrelia ◽  
Alessandra Bendini ◽  
Giovanni Lercker ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 513
Author(s):  
Zheng Zhang ◽  
Meng Gu ◽  
Zhongze Gu ◽  
Yan-Ru Lou

Genetic polymorphisms are defined as the presence of two or more different alleles in the same locus, with a frequency higher than 1% in the population. Since the discovery of long non-coding RNAs (lncRNAs), which refer to a non-coding RNA with a length of more than 200 nucleotides, their biological roles have been increasingly revealed in recent years. They regulate many cellular processes, from pluripotency to cancer. Interestingly, abnormal expression or dysfunction of lncRNAs is closely related to the occurrence of human diseases, including cancer and degenerative neurological diseases. Particularly, their polymorphisms have been found to be associated with altered drug response and/or drug toxicity in cancer treatment. However, molecular mechanisms are not yet fully elucidated, which are expected to be discovered by detailed studies of RNA–protein, RNA–DNA, and RNA–lipid interactions. In conclusion, lncRNAs polymorphisms may become biomarkers for predicting the response to chemotherapy in cancer patients. Here we review and discuss how gene polymorphisms of lncRNAs affect cancer chemotherapeutic response. This knowledge may pave the way to personalized oncology treatments.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


2014 ◽  
Vol 38 (3) ◽  
pp. 774-782 ◽  
Author(s):  
Merve Bacanlı ◽  
Sevtap Aydın ◽  
Gökçe Taner ◽  
Hatice Gül Göktaş ◽  
Tolga Şahin ◽  
...  

2009 ◽  
Vol 30 (11) ◽  
pp. 1205-1214 ◽  
Author(s):  
Zafer Türkmen ◽  
Kültiğin Çavuşoğlu ◽  
Kürşat Çavuşoğlu ◽  
Kürşad Yapar ◽  
Emine Yalçin

2021 ◽  
Vol 17 ◽  
Author(s):  
Gideon Ayeni ◽  
Mthokozisi Blessing Cedric Simelane ◽  
Shahidul Islam ◽  
Ofentse Jacob Pooe

Background: Medicinal plants together with their isolated bioactive compounds are known for their antioxidant properties which constitute therapeutic agents that are routinely employed in the treatment of liver diseases. Aims of the Study: The current study sought to explore the protective role of Warburgia salutaris and its isolated compound, iso-mukaadial acetate against carbon tetrachloride (CCl4)-induced hepatic injury. Methods: Thirty-five male Sprague Dawley rats were divided into seven groups of five animals each and injected with CCl4 to induce hepatic injury. Results: Treatment with the crude extract of W. salutaris and of iso-mukaadial acetate significantly reduced the levels of alkaline phosphatase, alanine and aspartate aminotransaminases, total bilirubin and malondialdehyde in a dose dependent manner, when compared to untreated groups. Liver histology revealed a reduction in hepatic necrosis and inflammation. Conclusion: The current investigation has demonstrated that W. salutaris extract and iso-mukaadial acetate could mitigate the acute liver injury inflicted by a hepatotoxic inducer in rats.


2019 ◽  
Vol 46 (1) ◽  
pp. 69 ◽  
Author(s):  
Nibedita Chakraborty ◽  
Jolly Basak

Vigna mungo (L.)Hepper is an economically important leguminous crop in south-east Asia. However, its production is severely affected by Mungbean yellow mosaic India virus (MYMIV). It is well established that methyl jasmonate (MeJA) is effective in inducing resistance against pathogens in several plants. To assess the role of MeJA in developing MYMIV tolerance in V. mungo, we analysed time-dependent biochemical and molecular responses of MYMIV susceptible V. mungo after exogenous application of different MeJA concentrations, followed by MYMIV infection. Our analysis revealed that exogenous application of different concentrations of MeJA resulted in decreased levels of malondialdehyde with higher membrane stability index values in MYMIV susceptible V. mungo, suggesting the protective role of MeJA through restoring the membrane stability. Moreover, the level of expression of different antioxidative enzymes revealed that exogenous MeJA is also very effective in ROS homeostasis maintenance. Enhanced expressions of the defence marker genes lipoxygenase and phenylalanine ammonia-lyase and the reduced expression of the MYMIV coat-protein encoding gene in all MeJA treated plants post MYMIV infection revealed that exogenous application of MeJA is effective for MYMIV tolerance in V. mungo. Our findings provide new insights into the physiological and molecular mechanisms of MYMIV tolerance in Vigna induced by MeJA.


Sign in / Sign up

Export Citation Format

Share Document