Gas chromatographic – mass spectrometry profile and comparative anti-diabetic properties of Curcuma longa and Curcuma domestica (Zingibereacae) essential oils collected from Nigeria

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
C Elusiyan ◽  
E Uko ◽  
I Oyemitan
2002 ◽  
Vol 57 (5-6) ◽  
pp. 449-451 ◽  
Author(s):  
Dolores García ◽  
Antonio Alvarez ◽  
Paz Tornos ◽  
Angeles Fernandez ◽  
Teresa Sáenz

The essential oil of the leaves of P. racemosa var. terebinthina and P. racemosa var. grisea were examined by GC and GC/MS. The major constituents were α-terpineol acetate (27%), α-terpineol (20%) and 4-methoxy eugenol (12.6%) for P.racemosa var. terebinthina and 4-methoxy-isoeugenol (75.2%) and 4-methoxy-eugenol (4.5%) for P. racemosa var. grisea.


Author(s):  
C. MESAROS ◽  
M. CULEA ◽  
A. IORDACHE ◽  
O. COZAR

The composition of different essential oils (menthe, basil, lavender, rose) was investigated by gas chromatographic–mass spectrometry (GC–MS) method to identify those compounds responsible for the characteristic, pleasant floral or aroma odour or taste of some valuable oils. Three different rose oils presented monoterpenes as fragrance target compounds and some aliphatic hydrocarbons with fixative effects responsible for a longer-lasting odour impression. Chromatography was performed on a 5% phenyl methylpolysiloxane column (15 or 30 m x 0.25 mm I.D., 0.25 µm) operated in suitable temperature programs.


Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 53 ◽  
Author(s):  
Noura Dosoky ◽  
Prabodh Satyal ◽  
William Setzer

Curcuma species have been cultivated in tropical and subtropical regions in Asia, Australia, and South America for culinary as well as medicinal applications. The biological activities of Curcuma have been attributed to the non-volatile curcuminoids as well as to volatile terpenoids. Curcuma essential oils have demonstrated a wide variety of pharmacological properties. The objective of this work was to examine the variation in the compositions of Curcuma rhizome essential oils. In this work, the volatile oils from C. longa and C. zedoaria were obtained and analyzed by gas chromatography-mass spectrometry. The chemical compositions of C. longa and C. zedoaria essential oils, including those reported in the literature, were analyzed by hierarchical cluster analysis. In addition, cluster analyses of the chemical compositions of C. aromatica and C. aeruginosa from the literature were also carried out. Curcuma longa volatiles were dominated by α-turmerone, curlone, ar-turmerone, β-sesquiphellandrene, α-zingiberene, germacrone, terpinolene, ar-curcumene, and α-phellandrene and showed four distinct chemical clusters. C. zedoaria rhizome oil contained 1,8-cineole, curzerenone/epi-curzerenone, α-copaene, camphor, β-caryophyllene, elemol, germacrone, curzerene, and β-elemene and showed two different chemical types. C. aromatica had three clearly defined clusters, and C. aeruginosa had three types.


1994 ◽  
Vol 40 (2) ◽  
pp. 216-220 ◽  
Author(s):  
A H Wu ◽  
D Ostheimer ◽  
M Cremese ◽  
E Forte ◽  
D Hill

Abstract Interference by substances coeluting with targeted drugs is a general problem for gas chromatographic/mass spectrometric analysis of urine. To characterize these interferences, we examined human urine samples containing benzoylecgonine and fluconazole, and other drug combinations including deuterated internal standards that coelute (ISd,c) with target drugs, by selected-ion monitoring (SIM) and full-scan mass spectrometry. We show that, by SIM analysis, detecting the presence of an interferent is dependent on the specific IS used for the assay. When an ISd,c is used, the presence of another coeluting substance (interferent) suggests that the intensity of IS ions is substantially diminished, because the interferent affects both the ISd,c and target drug. When a noncoeluting IS (ISnc) is used, the interferent cannot be discerned unless it coincidently contains one or more of the ions monitored for either the target drug or ISnc. Under full-scan analysis, a coeluting interferent is directly discernable by examining the total ion gas chromatogram.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 212
Author(s):  
William N. Setzer ◽  
Lam Duong ◽  
Ambika Poudel ◽  
Srinivasa Rao Mentreddy

Turmeric (Curcuma longa L.) is an important spice, particularly is Asian cuisine, and is also used in traditional herbal medicine. Curcuminoids are the main bioactive agents in turmeric, but turmeric essential oils also contain health benefits. Turmeric is a tropical crop and is cultivated in warm humid environments worldwide. The southeastern United States also possesses a warm humid climate with a growing demand for locally sourced herbs and spices. In this study, five different varieties of C. longa were cultivated in north Alabama, the rhizome essential oils obtained by hydrodistillation, and the essential oils were analyzed by gas chromatographic techniques. The major components in the essential oils were α-phellandrene (3.7–11.8%), 1,8-cineole (2.6–11.7%), α-zingiberene (0.8–12.5%), β-sesquiphellandrene (0.7–8.0%), ar-turmerone (6.8–32.5%), α-turmerone (13.6–31.5%), and β-turmerone (4.8–18.4%). The essential oil yields and chemical profiles of several of the varieties are comparable with those from tropical regions, suggesting that these should be considered for cultivation and commercialization in the southeastern United States.


1984 ◽  
Vol 259 (17) ◽  
pp. 10801-10806
Author(s):  
B W Gibson ◽  
W C Herlihy ◽  
T S Samy ◽  
K S Hahm ◽  
H Maeda ◽  
...  

Foods ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 175 ◽  
Author(s):  
Tibet Tangpao ◽  
Hsiao-Hang Chung ◽  
Sarana Sommano

The research objectives of this study are to analyse the volatile compositions of different basil types available in Thai markets and to descriptively determine their aromatic qualities. Essential oils were hydro-distillated from fresh leaves of two Holy basil (Ocimum sanctum) varieties namely, white and red and other basil species, including Tree basil (O. gratissimum), Thai basil (O. basilicum var. thyrsiflorum), and Lemon basil (O. citriodorum). Oil physiochemical characteristics and volatile chromatograms from Gas Chromatography–Mass Spectrometry (GC-MS) were used to qualitatively and quantitatively describe the chemical compositions. Estragole, eugenol, and methyl eugenol were among the major volatiles found in the essential oils of these basil types. Classification by Principal Component Analysis (PCA) advised that these Ocimum spp. samples are grouped based on either the distinctive anise, citrus aroma (estragole, geranial and neral), or spice-like aroma (methyl eugenol, β-caryophyllene, and α-cubebene). The essential oils were also used for descriptive sensorial determination by five semi-trained panellists, using the following developed terms: anise, citrus, herb, spice, sweet, and woody. The panellists were able to differentiate essential oils of white Holy basil from red Holy basil based on the intensity of the anisic attribute, while the anise and citrus scents were detected as dominant in the Lemon basil, Tree basil, and Thai basil essential oils. The overall benefit from this research was the elucidation of aromatic qualities from Thai common Ocimum species in order to assess their potential as the raw materials for new food products.


Sign in / Sign up

Export Citation Format

Share Document