scholarly journals Variations in the Volatile Compositions of Curcuma Species

Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 53 ◽  
Author(s):  
Noura Dosoky ◽  
Prabodh Satyal ◽  
William Setzer

Curcuma species have been cultivated in tropical and subtropical regions in Asia, Australia, and South America for culinary as well as medicinal applications. The biological activities of Curcuma have been attributed to the non-volatile curcuminoids as well as to volatile terpenoids. Curcuma essential oils have demonstrated a wide variety of pharmacological properties. The objective of this work was to examine the variation in the compositions of Curcuma rhizome essential oils. In this work, the volatile oils from C. longa and C. zedoaria were obtained and analyzed by gas chromatography-mass spectrometry. The chemical compositions of C. longa and C. zedoaria essential oils, including those reported in the literature, were analyzed by hierarchical cluster analysis. In addition, cluster analyses of the chemical compositions of C. aromatica and C. aeruginosa from the literature were also carried out. Curcuma longa volatiles were dominated by α-turmerone, curlone, ar-turmerone, β-sesquiphellandrene, α-zingiberene, germacrone, terpinolene, ar-curcumene, and α-phellandrene and showed four distinct chemical clusters. C. zedoaria rhizome oil contained 1,8-cineole, curzerenone/epi-curzerenone, α-copaene, camphor, β-caryophyllene, elemol, germacrone, curzerene, and β-elemene and showed two different chemical types. C. aromatica had three clearly defined clusters, and C. aeruginosa had three types.

Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1876 ◽  
Author(s):  
Yusuf Andriana ◽  
Tran Dang Xuan ◽  
Tran Ngoc Quy ◽  
Hoang-Dung Tran ◽  
Quang-Tri Le

In this study, we evaluated antioxidant, antihyperuricemic, and herbicidal activities of essential oils (EOs) from Piper cubeba Bojer and Piper nigrum L.; two pepper species widely distributed in tropics, and examined their chemical compositions. Dried berries of P. cubeba and P. nigrum were hydro-distilled to yield essential oil (EO) of 1.23 and 1.11% dry weight, respectively. In the antioxidant assay, the radical scavenging capacities of P. cubeba EO against DPPH and ABTS free radicals were 28.69 and 24.13% greater than P. nigrum, respectively. In the antihyperuricemic activity, P. cubeba EO also exhibited stronger inhibitory effects on xanthine oxidase (IC50 = 54.87 µg/mL) than P. nigrum EO (IC50 = 77.11 µg/mL). In the herbicidal activity, P. cubeba EO showed greater inhibition on germination and growth of Bidens pilosa and Echinochloa crus-galli than P. nigrum EO. Besides, P. cubeba EO decreased 15.98–73.00% of photosynthesis pigments of B. pilosa and E. crus-galli, while electrolyte leakages, lipid peroxidations, prolines, phenolics, and flavonoids contents were increased 10.82–80.82% at 1.93 mg/mL dose. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analyses revealed that P. nigrum and P. cubeba EOs principally possessed complex mixtures of monoterpenes and sesquiterpenes. Terpinen-4-ol (42.41%), α-copaene (20.04%), and γ-elemene (17.68%) were the major components of P. cubeba EO, whereas β-caryophyllene (51.12%) and β-thujene (20.58%) were the dominant components of P. nigrum EO. Findings of this study suggest both P. cubeba and P. nigrum EOs were potential to treat antioxidative stress and antihyperuricemic related diseases. In addition, the EOs of the two plants may be useful to control B. pilosa and E. crus-galli, the two invasive and problematic weeds in agriculture practice.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 546 ◽  
Author(s):  
Truong Minh ◽  
Tran Xuan ◽  
Truong Van ◽  
Yusuf Andriana ◽  
Tran Viet ◽  
...  

Although many investigations on phytochemicals in rice plant parts and root exudates have been conducted, information on the chemical profile of essential oil (EO) and potent biological activities has been limited. In this study, chemical compositions of rice leaf EO and in vitro biological activities were investigated. From 1.5 kg of fresh rice leaves, an amount of 20 mg EO was obtained by distillation and analyzed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization (ESI), and atmospheric pressure chemical ionization (APCI) to reveal the presence of twelve volatile constituents, of which methyl ricinoleate (27.86%) was the principal compound, followed by palmitic acid (17.34%), and linolenic acid (11.16%), while 2-pentadecanone was the least (2.13%). Two phytoalexin momilactones A and B were first time identified in EO using ultra-performance liquid chromatography coupled with electrospray mass spectrometry (UPLC/ESI-MS) (9.80 and 4.93 ng/g fresh weight, respectively), which accounted for 7.35% and 3.70% of the EO, respectively. The assays of DPPH (IC50 = 73.1 µg/mL), ABTS (IC50 = 198.3 µg/mL), FRAP (IC50 = 700.8 µg/mL) and β-carotene oxidation (LPI = 79%) revealed that EO possessed an excellent antioxidant activity. The xanthine oxidase assay indicated that the anti-hyperuricemia potential was in a moderate level (IC50 = 526 µg/mL) as compared with the standard allopurinol. The EO exerted potent inhibition on growth of Raphanus sativus, Lactuca sativa, and two noxious weeds Echinochloa crus-galli, and Bidens pilosa, but in contrast, the growth of rice seedlings was promoted. Among the examined plants, the growth of the E. crus-galli root was the most inhibited, proposing that constituents found in EO may have potential for the control of the problematic paddy weed E. crus-galli. It was found that the EO of rice leaves contained rich phytochemicals, which were potent in antioxidants and gout treatment, as well as weed management. Findings of this study highlighted the potential value of rice leaves, which may provide extra benefits for rice farmers.


Foods ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 175 ◽  
Author(s):  
Tibet Tangpao ◽  
Hsiao-Hang Chung ◽  
Sarana Sommano

The research objectives of this study are to analyse the volatile compositions of different basil types available in Thai markets and to descriptively determine their aromatic qualities. Essential oils were hydro-distillated from fresh leaves of two Holy basil (Ocimum sanctum) varieties namely, white and red and other basil species, including Tree basil (O. gratissimum), Thai basil (O. basilicum var. thyrsiflorum), and Lemon basil (O. citriodorum). Oil physiochemical characteristics and volatile chromatograms from Gas Chromatography–Mass Spectrometry (GC-MS) were used to qualitatively and quantitatively describe the chemical compositions. Estragole, eugenol, and methyl eugenol were among the major volatiles found in the essential oils of these basil types. Classification by Principal Component Analysis (PCA) advised that these Ocimum spp. samples are grouped based on either the distinctive anise, citrus aroma (estragole, geranial and neral), or spice-like aroma (methyl eugenol, β-caryophyllene, and α-cubebene). The essential oils were also used for descriptive sensorial determination by five semi-trained panellists, using the following developed terms: anise, citrus, herb, spice, sweet, and woody. The panellists were able to differentiate essential oils of white Holy basil from red Holy basil based on the intensity of the anisic attribute, while the anise and citrus scents were detected as dominant in the Lemon basil, Tree basil, and Thai basil essential oils. The overall benefit from this research was the elucidation of aromatic qualities from Thai common Ocimum species in order to assess their potential as the raw materials for new food products.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4244 ◽  
Author(s):  
Dosoky ◽  
Satyal ◽  
Barata ◽  
da Silva ◽  
Setzer

Black pepper (Piper nigrum) is historically one of the most important spices and herbal medicines, and is now cultivated in tropical regions worldwide. The essential oil of black pepper fruits has shown a myriad of biological activities and is a commercially important commodity. In this work, five black pepper essential oils from eastern coastal region of Madagascar and six black pepper essential oils from the Amazon region of Brazil were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The major components of the essential oils were α-pinene, sabinene, β-pinene, δ-3-carene, limonene, and β-caryophyllene. A comparison of the Madagascar and Brazilian essential oils with black pepper essential oils from various geographical regions reported in the literature was carried out. A hierarchical cluster analysis using the data obtained in this study and those reported in the literature revealed four clearly defined clusters based on the relative concentrations of the major components.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1433
Author(s):  
Suzana Struiving ◽  
Ana Carolina Mendes Hacke ◽  
Edésio Luiz Simionatto ◽  
Dilamara Riva Scharf ◽  
Cláudia Vargas Klimaczewski ◽  
...  

This study aimed to characterize and compare essential oils and ethyl acetate fractions obtained in basic and acidic conditions from both male and female Baccharis species (Baccharis myriocephala and Baccharis trimera) from two different Brazilian regions. Samples were characterized according to their chemical compositions and antiradical activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Principal component analysis (PCA) provided a clear separation regarding the chemical composition of essential oils from the samples obtained from different regions by using gas chromatography–mass spectrometry with flame-ionization detection (GC-MS-FID). PCA also revealed that gender and region of plant collections did not influence the chemical composition and antiradical activity of ethyl acetate fractions, which was corroborated with hierarchical cluster analysis (HCA) data. High performance liquid chromatography with diode-array detector (HPLC-DAD) identified significant quantities of flavonoids and phenolic acids in the fractions obtained in basic and acidic fractions, respectively. The obtained results clearly demonstrated that the geographical region of plant collection influenced the chemical composition of essential oils from the studied Baccharis species. Moreover, the obtained fractions were constituted by several antiradical compounds, which reinforced the usage of these species in folk medicine.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5639
Author(s):  
Zhenni Liao ◽  
Qing Huang ◽  
Qiming Cheng ◽  
Sardar Khan ◽  
Xiaoying Yu

Lavandin, as an important cash crop, is cultivated in Kunming, Yun-Gui Plateau of China. For the special growing environment, Lavandin was grown here and used to investigate the changes in the yield and chemical compositions of essential oils extracted from the flowers in different seasons. The essential oils were extracted by hydro-distillation and analysis by gas chromatography-mass spectrometry (GC-MS). Results indicated great changes in chemical composition depending on the season of harvesting. The yields of essential oils ranged from 2.0% to 3.8% among the seasons, and the highest yield was in the summer. Chemical composition data showed that the extracted oils were rich in oxygenated monoterpenes (55.4–81.4%), eucalyptol (38.7–49.8%), camphor (8.41–14.26%), α-bisabolol (6.6–25.5%), and linalool (4.6–12.5%). The contents of eucalyptol and α-bisabolol changed in a contrary trend with seasonal variations. The results provided new insight for Chinese Lavandin germplasm to be used in application and development, and reference to the researcher, the farmer, and investor for sustainable industrialization of the plant grown in the Yun-Gui Plateau of China, but also the similar plateau area of the sustainable developments.


2004 ◽  
Vol 1 (3) ◽  
pp. 301-303 ◽  
Author(s):  
Betül Demirci ◽  
Dietrich H. Paper ◽  
Fatih Demirci ◽  
K. Hüsnü Can Başer ◽  
Gerhard Franz

The essential oil ofBetula pendulaRoth. buds was obtained using both hydrodistillation and microdistillation techniques and their chemical compositions were analyzed using both gas chromatography (GC) and gas chromatography–mass spectrometry (GC-MS). Overall, more than 50 compounds were identified representing 80% and 92% for hydrodistillation and microdistillation, respectively. The main components (by hydrodistillation and microdistillation, respectively) found were α-copaene (12% and 10%), germacrene D (11% and 18%) and δ-cadinene (11% and 15%) in the analyzed essential oils. The microdistillation technique proved to be a useful tool and compliant alternative when compared to hydrodistillation.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 606 ◽  
Author(s):  
Dao Thi Minh Chau ◽  
Nguyen Thanh Chung ◽  
Le Thi Huong ◽  
Nguyen Huy Hung ◽  
Isiaka A. Ogunwande ◽  
...  

The Lauraceae is a family rich in aromatic and medicinal plants. Likewise, essential oils derived from members of this family have demonstrated a myriad of biological activities. It is hypothesized that members of the Lauraceae from Vietnam will yield essential oils that may be useful in controlling mosquito populations and treating microbial infections. In this work, the leaf essential oils of eleven species of Lauraceae (Beilschmiedia erythrophloia, B. robusta, B. yunnanensis, Cryptocarya concinna, C. impressa, C. infectoria, Litsea viridis, Machilus balansa, M. grandifolia, Neolitsea ellipsoidea, and Phoebe angustifolia) have been obtained by hydrodistillation and the chemical compositions analyzed by gas chromatography – mass spectrometry (GC-MS) and gas chromatography with flame ionization detection (GC-FID). The essential oils were screened for larvicidal activity against Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus, and for antimicrobial activity against Enterococcus faecalis, Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, and Candida albicans. The leaf essential oil of N. ellipsoidea, rich in (E)-β-ocimene (87.6%), showed excellent larvicidal activity against Ae. aegypti with a 24 h LC50 of 6.59 μg/mL. The leaf essential oil of C. infectoria, dominated by germacrene D (55.5%) and bicyclogermacrene (11.4%), exhibited remarkable larvicidal activity against Cx. quinquefasciatus (48 h LC50 = 0.40 μg/mL). N. ellipsoidea leaf essential oil also demonstrated notable antibacterial activity against E. faecalis and B. cereus with minimum inhibitory concentration (MIC) values of 16 μg/mL, while the leaf essential oil of C. impressa showed excellent anticandidal with an MIC of 16 μg/mL. Leaf essential oils from the Lauraceae should be considered for utilization as alternative agents for controlling mosquito populations and as antimicrobial agents.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 550 ◽  
Author(s):  
Evelyne Amenan Tanoh ◽  
Guy Blanchard Boué ◽  
Fatimata Nea ◽  
Manon Genva ◽  
Esse Leon Wognin ◽  
...  

This study focused, for the first time, on the evaluation of the seasonal effect on the chemical composition and biological activities of essential oils hydrodistillated from leaves, trunk bark and fruits of Zanthoxylum leprieurii (Z. leprieurii), a traditional medicinal wild plant growing in Côte d’Ivoire. The essential oils were obtained by hydrodistillation from fresh organs of Z. leprieurii growing on the same site over several months using a Clevenger-type apparatus and analyzed by gas chromatography-mass spectrometry (GC/MS). Leaf essential oils were dominated by tridecan-2-one (9.00 ± 0.02–36.80 ± 0.06%), (E)-β-ocimene (1.30 ± 0.50–23.57 ± 0.47%), β-caryophyllene (7.00 ± 1.02–19.85 ± 0.48%), dendrolasin (1.79 ± 0.08–16.40 ± 0.85%) and undecan-2-one (1.20 ± 0.03–8.51 ± 0.35%). Fruit essential oils were rich in β-myrcene (16.40 ± 0.91–48.27 ± 0.26%), citronellol (1.90 ± 0.02–28.24 ± 0.10%) and geranial (5.30 ± 0.53–12.50 ± 0.47%). Tridecan-2-one (45.26 ± 0.96–78.80 ± 0.55%), β-caryophyllene (1.80 ± 0.23–13.20 ± 0.33%), α-humulene (4.30 ± 1.09–12.73 ± 1.41%) and tridecan-2-ol (2.23 ± 0.17–10.10 ± 0.61%) were identified as major components of trunk bark oils. Statistical analyses of essential oil compositions showed that the variability mainly comes from the organs. Indeed, principal component analysis (PCA) and hierarchical cluster analysis (HCA) allowed us to cluster the samples into three groups, each one consisting of one different Z. leprieurii organ, showing that essential oils hydrodistillated from the different organs do not display the same chemical composition. However, significant differences in essential oil compositions for the same organ were highlighted during the studied period, showing the impact of the seasonal effect on essential oil compositions. Biological activities of the produced essential oils were also investigated. Essential oils exhibited high insecticidal activities against Sitophilus granarius, as well as antioxidant, anti-inflammatory and moderate anti-plasmodial properties.


2014 ◽  
Vol 10 (8) ◽  
pp. 3012-3021
Author(s):  
Mohamed Mihoubi ◽  
Wafa Mihoubi ◽  
Ali Gargouri ◽  
Raoudha Jarraya

The essential oils of flowers and remaining parts of the plant Senecio gallicus (Asteraceae), growing wild in Sfax (Tunisia), were obtained by hydrodistillation over a period of two years (2012 and 2013). Their analysis by Gas Chromatography-Mass Spectrometry (GC-MS), led to a total number of 36 components, belonging to different classes of chemical compounds. Oils compositions were characterized by the abundance of monoterpenes hydrocarbons, the major compounds present in flowers for the two years of study were  respectively the sabinene (49.45% and 28.86%), the α-pinene (9.67% and 9.1%), and the β-myrcene (9.88% and 10.97%). These compounds were also dominant in the essential oils of the plant without flowers where they represent (65.34% and 55%) for the sabinene, (4.14% and 7.3%) for α-pinene, and (6.86% and 0%) for β-myrcene. Obtained essential oils were tested for many biological activities and showed a moderate effect against the fungus Trichoderma reesei and bacteria such as Bacillus sp and Staphylococcus aureus. This study of the Senecio gallicus essential oils represents the first one in Tunisia.


Sign in / Sign up

Export Citation Format

Share Document