Mechanisms of Lung Injury and Bronchopulmonary Dysplasia

2016 ◽  
Vol 33 (11) ◽  
pp. 1076-1078 ◽  
Author(s):  
Alan Jobe

Although bronchopulmonary dysplasia (BPD) is the most frequent adverse outcome for infants born at < 30 weeks gestational age, there remain major gaps in understanding the pathophysiology, and thus there are few effective targeted therapies to prevent and treat BPD. This review will focus on the substantial problems and knowledge gaps for the clinician and investigator when considering lung injury and BPD. The epidemiology of BPD is clear: BPD is a lung injury syndrome predominantly in extremely low-birth-weight infants with an incidence that increases as gestation/birth weight decrease, with growth restriction, in males and with fetal exposures and with injury from postdelivery respiratory care. However, we do not have a good definition of BPD that identifies the infants that die of respiratory disease before 36 weeks or that predicts long-term outcomes as well. The injury resulting in BPD likely begins as altered lung development before delivery in many infants (small for gestational age, chorioamnionitis, tobacco exposure), can be initiated by resuscitating at birth, and then amplified by postnatal exposures (oxygen, mechanical ventilation, infection). Conceptually the events leading to BPD are the continued interplay of lung development that is altered progressively by injury and repair to result in poorly defined phenotypes of BPD. The injury pathways prominently cause inflammation, and as a proof of principle, corticosteroids can decrease the incidence and severity of BPD, as demonstrated by three recent trials of the early use of steroids. There are likely “adaptation” and “tolerance” responses that modulate the injury and repair to increase or decrease the damage, interactions that are not understood. BPD is a more complex disease.

2009 ◽  
Vol 28 (4) ◽  
pp. 221-229 ◽  
Author(s):  
Steven Peterson

Human lung development begins around day 26 postconception and continues throughout early childhood. Many crucial events can affect this delicate tissue as it develops, leading to altered and abnormal growth and development of the lungs, thereby yielding a variety of morbidities and sometimes even mortality. Understanding the pathophysiology of lung injury in the extremely low birth weight neonate is essential when caring for these infants, especially during the first hours of life. This article provides bedside clinicians with foundational information related to acute lung injury and the sequence of events that can ultimately lead to neonatal chronic lung disease and bronchopulmonary dysplasia.


Children ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 132
Author(s):  
Vikramaditya Dumpa ◽  
Vineet Bhandari

Recent advances in neonatology have led to the increased survival of extremely low-birth weight infants. However, the incidence of bronchopulmonary dysplasia (BPD) has not improved proportionally, partly due to increased survival of extremely premature infants born at the late-canalicular stage of lung development. Due to minimal surfactant production at this stage, these infants are at risk for severe respiratory distress syndrome, needing prolonged ventilation. While the etiology of BPD is multifactorial with antenatal, postnatal, and genetic factors playing a role, ventilator-induced lung injury is a major, potentially modifiable, risk factor implicated in its causation. Infants with BPD are at a higher risk of developing complications including sepsis, pulmonary arterial hypertension, respiratory failure, and death. Long-term problems include increased risk of hospital readmissions, respiratory infections, and asthma-like symptoms during infancy and childhood. Survivors who have BPD are also at increased risk of poor neurodevelopmental outcomes. While the ultimate solution for avoiding BPD lies in the prevention of preterm births, strategies to decrease its incidence are the need of the hour. It is time to focus on gentler modes of ventilation and the use of less invasive surfactant administration techniques to mitigate lung injury, thereby potentially decreasing the burden of BPD. In this article, we discuss the use of non-invasive ventilation in premature infants, with an emphasis on studies showing an effect on BPD with different modes of non-invasive ventilation. Practical considerations in the use of nasal intermittent positive pressure ventilation are also discussed, considering the significant heterogeneity in clinical practices and management strategies in its use.


Author(s):  
Sylvia Kirchengast ◽  
Beda Hartmann

The COVID 19 pandemic represents a major stress factor for non-infected pregnant women. Although maternal stress during pregnancy increases the risk of preterm birth and intrauterine growth restriction, an increasing number of studies yielded no negative effects of COVID 19 lockdowns on pregnancy outcome. The present study focused on pregnancy outcome during the first COVID 19 lockdown phase in Austria. In particular, it was hypothesized that the national lockdown had no negative effects on birth weight, low birth weight rate and preterm birth rate. In a retrospective medical record-based single center study, the outcome of 669 singleton live births in Vienna Austria during the lockdown phase between March and July 2020 was compared with the pregnancy outcome of 277 live births at the same hospital during the pre-lockdown months of January and February 2020 and, in addition, with the outcome of 28,807 live births between 2005 and 2019. The rate of very low gestational age was significantly lower during the lockdown phase than during the pre-lockdown phase. The rate of low gestational age, however, was slightly higher during the lockdown phase. Mean birth weight was significantly higher during the lockdown phase; the rates of low birth weight, very low birth weight and extremely low birth weight were significantly lower during the lockdown phase. In contrast, maternal gestational weight gain was significantly higher during the lockdown phase. The stressful lockdown phase in Austria seems to have no negative affect on gestational length and newborn weight among non-infected mothers.


2014 ◽  
Vol 307 (12) ◽  
pp. L936-L947 ◽  
Author(s):  
Jessica Berger ◽  
Vineet Bhandari

The etiology of bronchopulmonary dysplasia (BPD) is multifactorial, with genetics, ante- and postnatal sepsis, invasive mechanical ventilation, and exposure to hyperoxia being well described as contributing factors. Much of what is known about the pathogenesis of BPD is derived from animal models being exposed to the environmental factors noted above. This review will briefly cover the various mouse models of BPD, focusing mainly on the hyperoxia-induced lung injury models. We will also include hypoxia, hypoxia/hyperoxia, inflammation-induced, and transgenic models in room air. Attention to the stage of lung development at the timing of the initiation of the environmental insult and the duration of lung injury is critical to attempt to mimic the human disease pulmonary phenotype, both in the short term and in outcomes extending into childhood, adolescence, and adulthood. The various indexes of alveolar and vascular development as well as pulmonary function including pulmonary hypertension will be highlighted. The advantages (and limitations) of using such approaches will be discussed in the context of understanding the pathogenesis of and targeting therapeutic interventions to ameliorate human BPD.


2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesc Botet ◽  
Josep Figueras-Aloy ◽  
Xavier Miracle-Echegoyen ◽  
José Manuel Rodríguez-Miguélez ◽  
MªDolors Salvia-Roiges ◽  
...  

2016 ◽  
Vol 7 (4) ◽  
pp. 369-373 ◽  
Author(s):  
P. P. Bassareo ◽  
V. Fanos ◽  
M. Puddu ◽  
S. Marras ◽  
G. Mercuro

Preterm birth and epicardial fat thickness (EFT) constitute novel risk factors for the onset of future adverse cardiovascular events. In total, 30 ex-extremely low birth weight (ex-ELBW) subjects (10 males, 20 females, aged 17–28) were enrolled and compared with 30 healthy peers. EFT was significantly higher (8.7±0.7 mm v. 5.6±0.9 mm; P<0.001) in ex-ELBW than in controls and was correlated with birth weight (r=−0.47, P=0.0009), gestational age (r=−0.39, P=0.03) and cardiac left ventricular mass (r=0.51, P=0.004). When excluding the influence of body mass index, birth weight was the sole remaining determinant of EFT, irrespective of gestational age (r=−0.37, P=0.04). The same findings when excluding the possible influence of blood pressure values on the cardiac structures (r=−0.40, P=0.028). In conclusion, EFT is significantly higher in former preterm subjects and is likewise associated with an increase in left ventricular mass. In view of the acknowledged correlation between the latter and an increased incidence of cardiovascular diseases, EFT appears to be an easy-to-measure tool capable of predicting the likely development of future adverse cardiovascular events in these subjects.


2003 ◽  
Vol 89 (4) ◽  
pp. 533-537 ◽  
Author(s):  
Jacqueline Bauer ◽  
Kathrin Maier ◽  
Gerald Hellstern ◽  
Otwin Linderkamp

The aim of the present study was to obtain serial values of O2 consumption (VO2), CO2 production (VCO2) and energy expenditure (EE) in healthy but extremely-low-birth-weight infants (birth weight <1000 g), during the first 5 weeks after birth. A total of seventeen spontaneously breathing and appropriate-for-gestational-age (birth weight and body length above the 10th and below the 90th percentile) preterm infants with gestational age 25–28 weeks and birth weight 590–990 g were enrolled in the study. Calorimetry was performed using an open-circuit calorimeter on days 6, 12, 18, 24, 30 and 36 of postnatal life. During the 5 weeks of observation, VO2 increased from 4·7 (SD 0·5) TO 9·1 (sd 1·0) ml/kg per min, VCO2 from 4·5 (sd 0·4) to 8·3 (SD 0·6) ml/kg per min and EE from 115 (sd 12) to 310 (sd 71) kJ/kg per d. The energy intake was always higher than EE, even at days 6 and 12. The RER decreased from 0·99 (sd 0·09) at day 12 to 0·91 (SD 0·05) at day 30. On all study days, there were highly significant positive correlations between energy intake and weight gain, EE and weight gain, and EE and energy intake (P<0·05). Multiple regression analysis showed that on most study days EE was more affected by energy intake than by weight gain. We conclude that in healthy preterm infants with birth weight <1000 g, EE increases by about 150 % in the first 5 weeks after birth, and that the EE values are related to energy intake and weight gain independent of postnatal age.


Sign in / Sign up

Export Citation Format

Share Document