Copper-Catalyzed Azomethine Imine–Alkyne Cycloadditions (CuAIAC)

Synthesis ◽  
2018 ◽  
Vol 50 (23) ◽  
pp. 4501-4524 ◽  
Author(s):  
Jurij Svete ◽  
Uroš Grošelj ◽  
Franc Požgan ◽  
Bogdan Štefane

Although the first example of copper-catalyzed azomethine imine–alkyne cycloaddition (CuAIAC) was published only a year after the seminal papers of Meldal and Sharpless on Cu-catalyzed azide–alkyne cycloaddition (CuAAC), the CuAIAC reaction has remained overlooked by the synthetic community for almost a decade. Since 2010, however, CuAIAC reaction started to emerge as a promising supplement to the well-known CuAAC reaction. The present review surveys primarily the literature on CuAIAC reaction since 2003. Beside this, azomethine imine–alkyne cycloadditions catalyzed by other metals, selected examples of metal-free reactions, and related [3+3] and [3+4] cycloadditions of azomethine imines are presented. All these experimental data indicate the viability of CuAIAC in organic synthesis and the applicability in ‘click’ chemistry.1 Introduction2 Reactions with Acyclic Azomethine Imines3 Reactions with C,N-Cyclic Azomethine Imines4 Reactions with N,N-Cyclic Azomethine Imines5 Reactions with C,N,N-Cyclic Azomethine Imines6 The Mechanism of the CuAIAC Reaction7 Conclusions and Outlook

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1074
Author(s):  
Joana F. Campos ◽  
Manon Cailler ◽  
Remi Claudel ◽  
Benjamin Prot ◽  
Thierry Besson ◽  
...  

The development of new and greener approaches to organic synthesis has been a trend in recent years. Continuing the latest publications of our team, in this work, we demonstrate the efficiency of three solvents: eucalyptol (1,8-cineole), cyclopentyl methyl ether (CPME), and 2-methyltetrahydrofuran (2-MeTHF) for the synthesis of O,S,N-heterocyclic compounds.


2021 ◽  
Author(s):  
Sujoy Rana ◽  
Jyoti Prasad Biswas ◽  
Sabarni Paul ◽  
Aniruddha Paik ◽  
Debabrata Maiti

The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.


RSC Advances ◽  
2021 ◽  
Vol 11 (31) ◽  
pp. 18960-18965
Author(s):  
F. Yushra Thanzeel ◽  
Christian Wolf

We report chemoselective and modular peptide bioconjugation using stoichiometric amounts of 4-halocoumarin and arylsulfonate agents that undergo metal-free C(sp2)-heteroatom bond formation at micromolar concentrations.


ACS Nano ◽  
2021 ◽  
Author(s):  
Cristian Rosso ◽  
Giacomo Filippini ◽  
Alejandro Criado ◽  
Michele Melchionna ◽  
Paolo Fornasiero ◽  
...  

Synthesis ◽  
2021 ◽  
Author(s):  
Felipe C. Demidoff ◽  
Leandro L. de Carvalho ◽  
Eduardo José P. Rodrigues Filho ◽  
Andréa Luzia F. de Souza ◽  
Chaquip D. Netto

AbstractFunctionalized 1,4-naphthoquinones have been employed as versatile synthons in organic synthesis, in addition to presenting a large array of biological activities. Herein, the applications of 2-amino-/ acetylamino-substituted 3-iodo-1,4-naphthoquinones in cross-coupling reactions are described to successfully afford sixteen novel 3-styryl-1,4-naphthoquinones (amino-stilbene-quinone hybrids) and four 3-alkynyl-1,4-naphthoquinone in overall good yields. Interestingly, the alkynylated derivatives could be obtained from ligand- and Pd-free CuI-mediated cross-coupling reactions, after extensive investigations to exclude Pd as a co-catalyst. Lastly, the desilanized terminal alkyne was subjected to click chemistry reactions to give two novel triazole-1,4-naphthoquinone hybrids.


RSC Advances ◽  
2016 ◽  
Vol 6 (26) ◽  
pp. 21979-22006 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Zahra Hassanzadeh ◽  
Parisa Gholamzadeh ◽  
Shima Asadi ◽  
Alireza Badiei

Click chemistry is undoubtedly the most powerful 1,3-dipolar cycloaddition reaction in organic synthesis.


2021 ◽  
Vol 10 (4) ◽  
pp. 377-392 ◽  
Author(s):  
Iryna Myrko ◽  
Taras Chaban ◽  
Yulia Matiichuk ◽  
Mohammad Arshad ◽  
Vasyl Matiychuk

In this review we systematized the theoretical and experimental data concerning the versatile approaches for the synthesis of N-acylphenothiazines. The aim of the study was to compile the literature reported worldwide in the past 20 years. This article also reviewed the analysis of pharmacological activities of these heterocycles as one of the promising chemotherapeutic objects for the modern bioorganic and medicinal chemistry. It has been hypothesized that the enormous biological potential of these moieties is due to the radical nature in the acyl moiety. Therefore, the present review will be a good contribution to the literature and will provide the platform for the medicinal chemistry researchers to carry out more studies aiming the N-acylphenothiazine moieties as the novel chemotherapeutic agents.


2019 ◽  
Vol 17 (22) ◽  
pp. 5505-5508 ◽  
Author(s):  
Yufeng Wu ◽  
Bing Tian ◽  
Chao Hu ◽  
Kohei Sekine ◽  
Matthias Rudolph ◽  
...  
Keyword(s):  

Metal-free reactions of 2H-azirines with C,N-cyclic azomethine imines were investigated.


2006 ◽  
Vol 1 (10) ◽  
pp. 1934578X0600101 ◽  
Author(s):  
Vijay Nair ◽  
Rajeev S. Menon ◽  
Sreekumar Vellalath

Ever since its isolation in 1820, Quinine has played a crucial role in the development of organic chemistry, the chemical industry and modern medicine. A total synthesis of quinine, widely regarded as an event of epochal importance, was claimed by Woodward and Doering in 1945. This work, however, heavily relied on unsubstantiated literature reports and it appears that Woodward's work fell short of a total synthesis of quinine. The first total synthesis of quinine was reported by Uskokovic in the 1970s. The first stereoselective total synthesis of quinine was accomplished only in 2001, by Stork, who incidentally is the originator of the concept of stereoselectivity in total synthesis. Apart from the stereoselectivity, Stork's synthesis of quinine is remarkable for its conceptual uniqueness and retrosynthetic novelty. Naturally, this work has been attested as a landmark in organic synthesis by leaders in the field. Subsequently, Jacobson and Kobayashi reported the catalytic asymmetric synthesis of quinine in 2003 and 2004, respectively. Both these synthesis have followed a similar approach. The present review has attempted to provide a concise account of the synthesis of quinine from a historical perspective.


2020 ◽  
Vol 7 (1) ◽  
pp. 105-119 ◽  
Author(s):  
Swapnil A. Padvi ◽  
Dipak S. Dalal

Task-specific ionic liquids (TSILs) have received increased attention over the past few years as a Green Catalysts and Solvents for a large number of organic transformations. The present review article aims to provide an introduction, types of task-specific ionic liquids, preparation/synthesis, physical properties, characterization, use of TSILs as solvent and catalyst in organic synthesis.


Sign in / Sign up

Export Citation Format

Share Document