scholarly journals Demonstration of Green Solvent Performance on O,S,N-Heterocycles Synthesis: Metal-Free Click Chemistry and Buchwald—Hartwig Coupling

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1074
Author(s):  
Joana F. Campos ◽  
Manon Cailler ◽  
Remi Claudel ◽  
Benjamin Prot ◽  
Thierry Besson ◽  
...  

The development of new and greener approaches to organic synthesis has been a trend in recent years. Continuing the latest publications of our team, in this work, we demonstrate the efficiency of three solvents: eucalyptol (1,8-cineole), cyclopentyl methyl ether (CPME), and 2-methyltetrahydrofuran (2-MeTHF) for the synthesis of O,S,N-heterocyclic compounds.

Synthesis ◽  
2018 ◽  
Vol 50 (23) ◽  
pp. 4501-4524 ◽  
Author(s):  
Jurij Svete ◽  
Uroš Grošelj ◽  
Franc Požgan ◽  
Bogdan Štefane

Although the first example of copper-catalyzed azomethine imine–alkyne cycloaddition (CuAIAC) was published only a year after the seminal papers of Meldal and Sharpless on Cu-catalyzed azide–alkyne cycloaddition (CuAAC), the CuAIAC reaction has remained overlooked by the synthetic community for almost a decade. Since 2010, however, CuAIAC reaction started to emerge as a promising supplement to the well-known CuAAC reaction. The present review surveys primarily the literature on CuAIAC reaction since 2003. Beside this, azomethine imine–alkyne cycloadditions catalyzed by other metals, selected examples of metal-free reactions, and related [3+3] and [3+4] cycloadditions of azomethine imines are presented. All these experimental data indicate the viability of CuAIAC in organic synthesis and the applicability in ‘click’ chemistry.1 Introduction2 Reactions with Acyclic Azomethine Imines3 Reactions with C,N-Cyclic Azomethine Imines4 Reactions with N,N-Cyclic Azomethine Imines5 Reactions with C,N,N-Cyclic Azomethine Imines6 The Mechanism of the CuAIAC Reaction7 Conclusions and Outlook


2019 ◽  
Vol 23 (11) ◽  
pp. 1214-1238 ◽  
Author(s):  
Navjeet Kaur ◽  
Pranshu Bhardwaj ◽  
Meenu Devi ◽  
Yamini Verma ◽  
Neha Ahlawat ◽  
...  

Due to special properties of ILs (Ionic Liquids) like their wide liquid range, good solvating ability, negligible vapour pressure, non-inflammability, environment friendly medium, high thermal stability, easy recycling and rate promoters etc. they are used in organic synthesis. The investigation for the replacement of organic solvents in organic synthesis is a growing area of interest due to increasing environmental issues. Therefore, ionic liquids have attracted the attention of chemists and act as a catalyst and reaction medium in organic reaction with high activity. There is no doubt that ionic liquids have become a major subject of study for modern chemistry. In comparison to traditional processes the use of ionic liquids resulted in improved, complimentary or alternative selectivities in organic synthesis. The present manuscript reported the synthesis of multiple nitrogen containing five-membered heterocyclic compounds using ionic liquids. This review covered interesting discoveries in the past few years.


2019 ◽  
Vol 16 (6) ◽  
pp. 527-543 ◽  
Author(s):  
Pedro M.E. Mancini ◽  
Carla M. Ormachea ◽  
María N. Kneeteman

During the last twenty years, our research group has been working with aromatic nitrosubstituted compounds acting as electrophiles in Polar Diels-Alder (P-DA) reactions with different dienes of diverse nucleophilicity. In this type of reaction, after the cycloaddition reaction, the nitrated compounds obtained as the [4+2] cycloadducts suffer cis-extrusion with the loss of nitrous acid and a subsequent aromatization. In this form, the reaction results are irreversible. On the other hand, the microwave-assisted controlled heating become a powerful tool in organic synthesis as it makes the reaction mixture undergo heating by a combination of thermal effects, dipolar polarization and ionic conduction. As the Diels-Alder (D-A) reaction is one of the most important process in organic synthesis, the microwave (MW) irradiation was applied instead of conventional heating, and this resulted in better yields and shorter reaction times. Several substituted heterocyclic compounds were used as electrophiles and different dienes as nucleophiles. Two experimental situations are involved: one in the presence of Protic Ionic Liquids (PILs) as solvent and the other under solvent-free conditions. The analysis is based on experimental data and theoretical calculations.


Synthesis ◽  
2020 ◽  
Author(s):  
Peter Ehlers ◽  
Peter Langer ◽  
Marian Blanco Ponce ◽  
Silvio Parpart ◽  
Alexander Villinger ◽  
...  

AbstractA concise and modular synthesis of pyrrolo[1,2-a][1,6]- and [1,8]naphthyridines by a one-pot two-step reaction consisting of electrophilic acylation followed by an alkyne-carbonyl-metathesis reaction as the final cyclization step is reported. This developed synthetic methodology allows the facile synthesis of these heterocyclic core structures in mainly high overall yields under metal-free conditions. Reaction conditions are carefully optimized and display a novel supplement to access these tricyclic heterocyclic compounds.


RSC Advances ◽  
2021 ◽  
Vol 11 (31) ◽  
pp. 18960-18965
Author(s):  
F. Yushra Thanzeel ◽  
Christian Wolf

We report chemoselective and modular peptide bioconjugation using stoichiometric amounts of 4-halocoumarin and arylsulfonate agents that undergo metal-free C(sp2)-heteroatom bond formation at micromolar concentrations.


ACS Nano ◽  
2021 ◽  
Author(s):  
Cristian Rosso ◽  
Giacomo Filippini ◽  
Alejandro Criado ◽  
Michele Melchionna ◽  
Paolo Fornasiero ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2177
Author(s):  
Antonia Di Mola ◽  
Consiglia Tedesco ◽  
Antonio Massa

Herein we describe a very useful application of the readily available trifunctional aromatic ketone methyl-2-(2-bromoacetyl)benzoate in reactions with primary amines. An unexpected in situ air oxidation that follows a cascade process allowed the access to a series of isoquinoline-1,3,4(2H)-triones, a class of heterocyclic compounds of great interest containing an oxygen-rich heterocyclic scaffold. A modification of the original protocol, utilizing a Staudinger reaction in the presence of trimethylphosphine, was necessary for the synthesis of Caspase inhibitor trione with free NH group.


Synthesis ◽  
2021 ◽  
Author(s):  
Felipe C. Demidoff ◽  
Leandro L. de Carvalho ◽  
Eduardo José P. Rodrigues Filho ◽  
Andréa Luzia F. de Souza ◽  
Chaquip D. Netto

AbstractFunctionalized 1,4-naphthoquinones have been employed as versatile synthons in organic synthesis, in addition to presenting a large array of biological activities. Herein, the applications of 2-amino-/ acetylamino-substituted 3-iodo-1,4-naphthoquinones in cross-coupling reactions are described to successfully afford sixteen novel 3-styryl-1,4-naphthoquinones (amino-stilbene-quinone hybrids) and four 3-alkynyl-1,4-naphthoquinone in overall good yields. Interestingly, the alkynylated derivatives could be obtained from ligand- and Pd-free CuI-mediated cross-coupling reactions, after extensive investigations to exclude Pd as a co-catalyst. Lastly, the desilanized terminal alkyne was subjected to click chemistry reactions to give two novel triazole-1,4-naphthoquinone hybrids.


Sign in / Sign up

Export Citation Format

Share Document