Local Shear Conditions and Platelet Aggregates Regulate the Incorporation and Activity of Circulating Tissue Factor in ex-vivo Thrombi

2002 ◽  
Vol 88 (11) ◽  
pp. 822-826 ◽  
Author(s):  
Oana Vele ◽  
Yale Nemerson ◽  
Viji Balasubramanian

SummaryThe presence of thrombogenic blood-borne or circulating tissue factor (cTF) has recently been demonstrated. These observations have implicated cTF to be a key determinant of thrombus propagation by depositing on platelets in nascent thrombi. Previously, we detected cTF by detergent solubilization and addition of phospholipids. We now report the direct demonstration of TF activity in ex-vivo thrombi. Collagen-coated substrates were exposed to native blood at shear rates of 0, 650, and 2000 s-1 for 10 min in a modified rotating Teflon cone and plate viscometer. Substrates were then gently rinsed to remove ‘loose’ (unadherent) components of blood. cTF activity was measured by adding a solution containing 10 nM FVIIa, 100 nM FX, and 5 mM CaCl2 to the substrates exposed to blood. Samples of this mixture were obtained at intervals for 30 min and the amount of Xa generated was quantified by adding a chromogenic substrate, Spectrozyme Xa, and measuring the increase in OD at 405 nm. Our studies show that a minimal amount of generated Xa (∼ 1nM) can be measured from ex-vivo thrombi. Static and shear samples generated the same amount of Xa, with the exception of blood subjected to 650 s-1 shear. At 650 s-1 shear rate, the amount of Xa generated reached a maximum of 4 nM at 5 min and then decreased to ∼1 nM. Immunohistological stains and fluorescent images demonstrate the presence of cTF antigen at 650 s-1 wall shear rate.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4034-4034
Author(s):  
Raul Tonda ◽  
Ana M. Galan ◽  
Irene Lopez-Vilchez ◽  
Marcos Pino ◽  
Antonio Ordinas ◽  
...  

Abstract Hemophilic patients suffer bleeding episodes despite having a normal bleeding time. A possible platelet dysfunction in these patients has not been deeply investigated. rFVIIa improves hemostasis of hemophilic patients, even in those who develop inhibitors. Clinical efficacy of this drug has been widely confirmed, though, its mechanism of action is not fully understood. We used the PFA-100® with specially devised cartridges whose membrane apertures were coated with collagen alone (COL) or collagen-tissue factor (COL-TF). Blood samples from normal donors or from a group of patients with severe hemophilia A, were anticoagulated with low molecular weight heparin (LMWH). We tested the ability of rFVIIa to shorten the closure times under the previous conditions. The structure of the hemostatic plugs formed on the membrane apertures were further analyzed using light microscopy on thin cross-sections. Closure times were statistically prolonged in blood samples from hemophilic patients tested with COL cartridges (255±22 s.vs.187±15 s in normal donors; p<0.05). Presence of TF in the apertures (COL-TF) caused a 20% shortening in closure times, both in normal donors and in hemophilic patients. Exogenous addition of 10 μg/ml rFVIIa to blood samples from hemophilic patients induced a further statistically significant reduction of closure times (p<0.05). This further reduction in closure times was not observed in blood samples drawn from normal individuals. Microscopical analysis of the plugs formed on the apertures showed that occlusive thrombi formed in the presence of TF are more compact and have higher occlusive capacity. Addition of FVIIa led to the formation of more organized platelet plugs which appeared further consolidated with fibrin strands within platelet masses. Patients with severe hemophilia showed platelet dysfunction that could be detected with the PFA-100® using specific cartridges. It is likely that the platelet dysfunction observed in these patients could be related to concurrent reductions in VWF that could affect platelet adhesion in these patients revealed at the very elevated shear rates used in the PFA-100®. Under these conditions, TF deposited onto the collagen-coated apertures proved to play a significant role in the initiation of hemostasis. rFVIIa improved the recruitment of platelets on COL-TF and contributed to a partial correction of the platelet dysfunction observed in patients with hemophilia A as further confirmed by the formation of more efficient aggregates in the PFA-100. In essence, rFVIIa circumvented a pre-existent platelet adhesion defect in hemophiliac patients. The pro-hemostatic action of rFVIIa was not observed in parallel studies with blood from healthy donors, indirectly suggesting a good safety profile for this agent when hemostasis is well preserved. PFA-100 could be considered as a possible monitoring system of FVIIa when hemostasis is impaired.


1991 ◽  
Vol 65 (05) ◽  
pp. 596-600 ◽  
Author(s):  
Kjell S Sakariassen ◽  
Harvey J Weiss ◽  
Hans R Baumgartner

SummaryIn the present experiments we have investigated the influence of wall shear rate and axial position on platelet and fibrin deposition which results when flowing human non-anticoagulated blood is exposed to either non-procoagulant fibrillar collagen (human type III) or procoagulant subendothelium (rabbit aorta). Platelet adhesion, thrombus volume and fibrin deposition were morphometrically evaluated at axial positions of 1 and 13 mm following perfusions for 5 min at shear rates of 100, 650 and 2,600 s-1.An axially-dependent decrease of platelet adhesion (34-57%, p <0.01-0.05) and thrombus volume (57-80%, p <0.05) was observed on collagen at all shear rates. On subendothelium, an axially-dependent decrease was observed for platelet adhesion only at 100 s-1 (29% ; p <0.01) and for thrombus volume at shear rates of 650 s-1 and above (49-58%, p <0.01). Deposition of fibrin on subendothelium was axially decreased (16-42%, p <0.05) at all shear rates, while no significant axial differences were seen on collagen. However, substantially more fibrin was deposited on the subendothelium (p <0.05), and the upstream platelet adhesion and thrombus volume were lower than on collagen (p <0.05) at 100 s-1 and 650 s-1. The axially-dependent phenomena on the two surfaces are consistent with the concept of rapid-growing upstream thrombi which deplete the blood layer streaming adjacent to the surface of platelets, leading to decreased platelet deposition farther downstream. The observations suggest that deposition of fibrin is enhanced by subendothelial tissue factor, and that upstream depletion of clotting factors may lower the downstream deposition of fibrin, analogous to the depletion of platelets.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4097-4097
Author(s):  
Pall T. Onundarson ◽  
Hanna S. Asvaldsdottir ◽  
Brynja R. Gudmundsdottir ◽  
Benny Sorensen

Abstract Major cardiac surgery and use of cardiopulmonary bypass (CPB) is often associated with the development of a severe coagulopathy, hyperfibrinolysis and increased risk of bleeding. The present ex vivo study challenged the hypotheses that whole blood thrombelastometry, activated with minute amounts of tissue factor, can reveal the development of a coagulopathy following cardiac surgery, and that supplementation with fibrinogen and rFVIIa, alone or in combination, can improve the ex vivo clotting pattern. In total, 22 patients with a median age of 68, undergoing coronary artery bypass grafting or valve surgery with use of CPB were included in the study. Dynamic thrombelastometric clotting profiles were recorded using citrated whole blood activated with dilute tissue factor (Innovin®, final dilution 1:17000). Blood samples were collected before surgery (control) and immediately following in vivo neutralization of heparin with protamine sulphate. All blood samples for thrombelastometry were treated with heparinase to ensure neutralization of residual heparin. Standard coagulation laboratory parameters and platelet function confirmed the development of a significant coagulopathy following CPB. The post-operative blood samples were spiked with buffer, rFVIIa (2 μg/mL), fibrinogen (1mg/mL), or the combination of rFVIIa+fibrinogen. The post-operative coagulopathy was evident by thromboelastometry as a statistically significant derangements (Wilcoxon signed rank test). There was prolongation of the onset of clotting (CT, from a median value of 183 seconds pre-op to 385 sec post-op), reduced maximum velocity of clot formation (MaxVel, from 17.5 mm*100/sec pre-op to 15.1 post-op) and reduced maximum clot firmness (MCF, from 6234 mm pre-op to 5527 post-op). Ex vivo spiking with rFVIIa shortened the post-operative clot initiation phase (CT) to a median of 232 sec. Fibrinogen also shortened the post-operative clotting time to a median of 246 sec, and additionally increased the MCF to 5839 mm. Finally, the combination of rFVIIa and fibrinogen together corrected the abnormal thromboelastometric findings associated with CPB-coagulopathy into the pre-operative range, i.e. median CT decreased to 155 sec, MaxVel increased to 16.8 mm*100/sec and MCF increased to 5808 mm. In conclusion, the experiments suggest a potential role of fibrinogen supplementation during control of bleeding following CPB, either alone or in combination with rFVIIa, since the combination corrected the CPB-associated coagulopathy remaining following neutralization of heparin.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1518-1518
Author(s):  
Tamas Alexy ◽  
Thomas D. Coates ◽  
John C Wood ◽  
Herbert J. Meiselman ◽  
Rosalinda B Wenby ◽  
...  

Abstract Abstract 1518 Poster Board I-541 Introduction Chronic blood transfusions are commonly used as therapy for sickle cell disease (SCD, HbSS) in order to improve oxygen delivery and minimize complications such as stroke in high-risk children. Vaso-occlusive crises can occur in regions of high shear flow (e.g., major cerebral artery occlusions) or regions of low shear flow (e.g., marrow infarct) leading to acute ischemia and, if severe, to necrosis of affected tissues. Transfusion with normal (AA) RBC causes an increase of hematocrit (H) that is complicated by two opposing factors: increased hematocrit (H) causes a linear increase of oxygen carrying capacity and also an exponential increase of blood viscosity (η). As a consequence, the calculated oxygen transport effectiveness, defined as the ratio of H to η (H/η), is a biphasic function of hematocrit: H/η initially increases with H, reaches a maximum at an optimal H value, and then declines with further increases of H. At equal H and shear rate, sickle (SS) blood has significantly higher viscosity than AA and hence part of the strategy for transfusing SCD patients is to reduce η so as to improve H/η. Viscosity studies at high shear rates indicate that an optimum H can be demonstrated for AA-SS RBC mixtures prepared by adding AA RBC to SS blood to simulate transfusion. In marked contrast, low shear rate results for AA-SS mixtures indicate that there is no optimum hematocrit and H/η always decreases with increasing H (Transfusion 46:912-918, 2006). In order to extend these previous in vitro observations to SCD patients, we have measured blood viscosity and hematocrit using whole blood samples acquired prior to and following routine therapeutic transfusion; H/η was calculated over a wide, physiologically relevant shear rate range. Methods All subjects (n= 8, mean age =18.7 years) had homozygous HbSS disease, were crisis-free for > 4 weeks, and were enrolled in a chronic transfusion protocol designed to yield < 30% HbS and a post-transfusion H of 30-35%. Blood samples were obtained pre- and within 120 hours post-transfusion. A computer-controller tube viscometer was used to determine blood viscosity (37 °C, 40 mm Hg oxygen tension) over a shear rate range of 1 – 1,000 1/s. Results 1) As anticipated, blood viscosity and the degree of non-Newtonian flow behavior increased with H (24.7% pre-transfusion, 34.6% post-transfusion); 2) the change of H/η from pre- to post- transfusion was markedly affected by shear rate (Figure). As indicated, there is a large adverse effect at low shear (i.e., H/η reduced by 20-25% following transfusion), a neutral effect at about 50-100 1/s, and an improved H/η at high shear (Figure). That is, transfusion with AA RBC to obtain a lower percent SS RBC and a higher H actually impairs oxygen transport effectiveness at low shear and is only beneficial at high shear. Conclusions Clinical experience suggests that transfusion regimens aimed a keeping HbS at 30-50% are effective in preventing recurrent strokes in high-risk children. However, our new in vivo transfusion data suggest that at low shear rates, %HbS must be reduced further for H/η to surpass pre-transfusion levels. We interpret these findings as being consistent with our previous data for AA-SS RBC mixtures. They are also consistent with clinical results indicating lack of efficacy for transfusion in low flow areas (e.g., bone marrow during acute crisis) but highly beneficial effects in high flow regions (e.g., cerebral arteries). Our results thus suggest that benefits of transfusion may vary depending on local flow rates (i.e., shear rates) and organ-specific hemodynamics. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4155-4155
Author(s):  
Margo Renee Rollins ◽  
Byungwook Ahn ◽  
Yumiko Sakurai ◽  
Jordan C Ciciliano ◽  
Wilbur A Lam

Abstract Sickle Cell Disease (SCD) is an inherited disorder of the β-globin chain of hemoglobin, in which a single point mutation leads to decreased deformability of red blood cells (RBCs) and increased cellular adhesion to endothelium. The effect of this mutation on RBCs has been well characterized, and the interplay of endothelial cells, RBCs, and white blood cells (WBCs) have also been well characterized. However, few studies have specifically investigated how platelets interact with endothelial cells and other blood cells in the context of SCD and the role these cell fragments may have in vaso-occlusion. To that end, we utilized microfluidic technology previously developed in our lab to perform a “real time” in vitro analyses of platelet-endothelial cell interactions in SCD patient samples. This “microvasculature-on-a-chip” enables the visualization of blood cell-endothelial cell interactions under a controlled hemodynamic environment (Tsai et al, JCI, 2012). As shear stress can trigger platelet activation, we further modified and optimized our standard microfluidic devices to encompass 3 different physiologic shear rates. Our device features microchannels 50µm in diameter with human umbilical vein endothelial cells (HUVEC) confluently lining the channels; there are 12 channels in each device, grouped in 3 sets of 4 channels with graduating shear rates spanning 3 orders of magnitude (Figure 1). Our initial experiments were performed under normoxic conditions allowing characterization of platelet-endothelial interactions in an “arterial” in vitro environment. Whole blood samples were obtained from 3 patient populations: patients with HgbSS SCD on hydroxyurea (HgbSS+HU), patients with HgbSS SCD not on hydroxyurea (HgbSS-no HU), and normal healthy controls. Over 30 minutes, whole blood stained with fluorescently labeled CD41 to identify platelets and Hoeschst to identify HUVEC nuclei was perfused at a rate of 1.5µl/minute under videomicroscopy. Accumulation of platelets on the endothelialized channels and platelet aggregates were quantified based on anti-CD41 fluorescence. Within 1 minute of perfusion, HgbSS-no HU whole blood samples exhibited extensive platelet aggregates at 1 and 10 dyne/cm2 (Figure 2); this phenomenon did not occur under any of the shear conditions in blood samples from Hgb SS+HU or healthy control samples. In HgbSS-no HU blood samples, some of these “thrombi”-like aggregates were stable under flow, increased in size, and persisted for the remainder of the 30 minute experiments. In contrast, mild, uniform, platelet adhesion slowly developed at high shear conditions in Hgb SS+HU with fewer platelet aggregates forming as compared to patients with HgbSS- no HU. Healthy control samples did not exhibit this platelet aggregation. There appears to be an attenuating effect of hydroxyurea on platelets that prevents platelet clumping from occuring as frequently under various shear conditions that is not present in the Hgb SS-no HU samples (Figure 3). In conclusion, using our novel in vitro system, we have demonstrated the platelets from Hgb SS-no HU patients have a significantly increased propensity to adhere, aggregate, and accumulate in endothelialized microvasculature-sized microchannels. Interestingly, this effect appears to be attenuated in blood samples from Hgb SS+HU patients and not present in healthy controls, demonstrating that hydroxyurea appears to be an important modifier of this phenomenon. Experiments investigating the underlying mechanisms of this phenomenon, the effects of deoxygenation and the potential role of platelets in vaso-occlusion, the effects of sickle cell platelet adhesion/aggregation on endothelial function, and how hydroxyurea may or may not affect any or all of these parameters, are all currently ongoing. Figure 1 Figure 1. Figure 2 Figure 2. Figure 3 Figure 3. Disclosures No relevant conflicts of interest to declare.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2035
Author(s):  
Mahmoud Eslami Pirharati ◽  
Hans-W. Krauss ◽  
Carsten Schilde ◽  
Dirk Lowke

Rheological properties of cementitious suspensions are affected not only by their mixture composition but also by process-related factors such as shear history. To enable a model-based description, investigations were carried out on the effect of shear history (shear rate variation over time) on the cement paste agglomeration state. Therefore, a Focused Beam Reflectance Measurement (FBRM) system and a wide gap rheometer were coupled to study the relation between shear history and in-situ chord length distribution simultaneously, indicating particle agglomeration. Hence, the effect of average shear rates (resulting from the applied shear profile), as well as shear rate distribution within the gap (local shear rates) on the particle agglomeration state have been investigated. The rheological properties of cement paste were evaluated with the Reiner–Riwlin approach. Furthermore, the agglomeration state of the particles was compared for different average shear rates and local shear rates at various positions of the FBRM probe. The results show that the median chord length increases in all positions when the average shear rate is decreased, indicating increasing particle agglomeration. Moreover, due to variable local shear rates at different FBRM probe positions, different agglomeration states are observed, resulting from two factors, shear rate dependent particle agglomeration and shear-induced particle migration.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1144-1144
Author(s):  
Grazia Loredana Mendolicchio ◽  
Patrizia Marchese ◽  
Corrado Lodigiani ◽  
Anna Colombo ◽  
Matteo Ferrari ◽  
...  

Abstract Background Warfarin, an oral anti-vitamin K anticoagulant, effectively prevents venous thrombosis in patients at risk, but requires constant laboratory monitoring to maintain a therapeutic range and reduce bleeding complications. For many indications, oral inhibitors of coagulation factor (F) Xa and thrombin (FIIa) have proven at least as effective as warfarin with comparable risk of bleeding complications, but with the advantage of administration in a fixed dose without laboratory monitoring. Although rare, thrombosis may still occur in treated patients and bleeding remains a potentially serious complication. Aims The assumption that an equal dose of an anticoagulant drug can achieve a comparable antithrombotic effect in different patients implies that an appropriate test of efficacy should yield results within a relatively narrow range of values. Thus, we measured the volume of platelet aggregates and fibrin deposited onto thrombogenic surfaces exposed to flowing blood to compare the antithrombotic effect of rivaroxaban (Riv), a FXa inhibitor, and dabigatran (Dab), a thrombin inhibitor, with that of warfarin (Warf) in patients undergoing total knee or hip replacement and treated to prevent deep vein thrombosis. Methods Blood containing 0.011 M trisodium citrate was recalcified with 5 mM CaCl2 and perfused at the wall shear rate of 300 and 1500 s-1 over a surface coated with fibrillar collagen type I, or at 300 s-1 over recombinant tissue factor (TF). Platelet aggregates and fibrin were detected in situ through distinct fluorochromes and the respective volumes were measured from stacks of confocal optical sections. We tested 12 normal controls, 12 patients treated with Warf (INR between 1.94 and 2.90), 10 patients treated with Riv and 10 with Dab between 8 and 16 days from the initiation of therapy. Statistical analysis was performed using one-way analysis of variance. Results On the collagen surface at the lower shear rate of 300 s-1, the blood of Warf patients yielded an average volume of deposited fibrin significantly lower not only of control (P<0.001) but also Riv and Dab patients (P<0.01); the latter two were not different from control. All 12 Warf samples, but only 5/10 Riv and 4/10 Dab, were below the lower limit of normal values. In contrast, at the higher shear rate of 1500 s-1 the average fibrin volume was significantly lower than control in Warf (P<0.001) as well as Riv and Dab (P<0.01) blood. Notably, at both lower and higher shear rate the average volume of platelet aggregates was not decreased in Warf, Riv or Dab blood; rather, the tendency was to increased. On the TF surface, stable thrombus formation in flowing blood could only be assessed at the lower shear rate of 300 s-1, since even the reactivity of normal samples was negligible at 1500 s-1; thus we focused on blood from Riv and Dab treated patients who showed only an insignificant reduction of fibrin formation at 300 s-1 on the collagen surface. In contrast, thrombus volume in the blood of Riv and Dab treated patients was decreased on the TF surface under the same flow conditions. In the case of Dab, the average volume of both platelet aggregates and fibrin was significantly lower (P<0.01) than in control blood; with Riv, fibrin volume was also significantly reduced (p<0.01), but that of platelet aggregates was not. Of note, the volume of fibrin formed in Dab samples was only one third of that in Riv samples. Summary/Conclusions The significance of findings obtained with a test of thrombus formation in ex vivo flowing blood and the potential value for interpreting the evidence provided by clinical trials remain to be established prospectively. This notwithstanding, it is apparent that different agents have different anticoagulant effects, and those administered in a “one fits all” dose and without laboratory monitoring lead to a greater inter-individual variability of results. The influence of the thrombogenic surface on the ex vivo anticoagulant potency of drugs with distinct coagulation targets suggests that treating or preventing different thrombotic disorders may require a selective choice among therapeutic agents targeting specific coagulation pathways and physiologic inhibitors. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1989 ◽  
Vol 73 (4) ◽  
pp. 961-967 ◽  
Author(s):  
L Badimon ◽  
JJ Badimon ◽  
VT Turitto ◽  
V Fuster

Abstract We have previously observed that von Willebrand factor (vWF) plays an important role in platelet deposition on subendothelium at low values of wall shear rate (200 to 400 seconds-1). In the present study, we have investigated the mechanism responsible for such a defect in platelet deposition at low shear rates in the absence of vWF. Blood from both normal and von Willebrand's disease (vWD) animals was exposed to de-endothelialized aorta from normal pigs for a range of shear rates (200 to 3,000 seconds-1) and exposure times (three to 30 minutes) in a tubular perfusion chamber. Variations in the method of inhibiting coagulation (none, heparin, citrate, hirudin, and EDTA) and of perfusing blood (in vitro v ex vivo) were compared by determining the influence of wall shear rate and vWF on the deposition of 111In-labeled platelets on subendothelium. Whereas platelet deposition was reduced in the absence of vWF for all experimental variations at high shear rates (greater than 850 seconds-1), a defect was observed at low shear rates only when heparinized blood was exposed by means of an ex vivo perfusion system. Maximum sensitivity of the measurement occurs under ex vivo perfusion conditions due to the reduced ability of platelets to deposit in normal blood when recirculated in vitro. Our results indicate that vWF mediates platelet-vessel wall interaction even at low shear rates and that such effect can only be observed in systems where platelet function is minimally affected by the experimental conditions.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4152-4152
Author(s):  
Martine Jandrot-Perrus ◽  
Elmina Mammadova-Bach ◽  
Veronique Ollivier ◽  
Stephane Loyau ◽  
Christian Gachet ◽  
...  

Abstract Background: Fibrin, the end product of the coagulation cascade, consolidates the platelet plug at site of thrombosis: polymerized fibrin supports platelet adhesion under low and high shear rate conditions (Hantgan RR et al., Thromb Haemost 1992) and triggers platelet procoagulant activity (Beguin S et al., Blood 1999). These responses are largely independent of the integrin αIIβ3 and are carried by a yet ill-defined receptor. Platelet glycoprotein VI (GPVI) has a well-established key role in the initiation of thrombosis since it supports collagen-mediated platelet activation but it has recently been recognized to interact with other macromolecules such as fibronectin, vitronectin and laminins. We hypothesized GPVI could be the “missing” platelet receptor of fibrin. Aim of the study: to challenge the hypothesis that glycoprotein VI (GPVI) could be a functional fibrin receptor Methods: Thrombin generation was measured using calibrated automated thrombogram (CAT) in PRP from healthy volunteers, four GPVI-deficient patients and one patient with a fibrinogen deficiency. CAT was also performed on washed platelets mixed with prothrombin complex (FII, FVII, FIX, FX), antithrombin and fibrinogen. GPVI was blocked using the Fab of the monoclonal antibody 9O12. Fibrin polymerization was blocked using the GPRP peptide. GPVI binding to fibrin was measured in vitro using recombinant soluble GPVI (GPVI-Fc). Flow based adhesion assays were performed in capillary chambers coated with polymerized fibrin at variable shear rates and platelet morphological changes analyzed by scanning electron microscopy. The formation of fibrin-platelet thrombi was visualized by perfusing recalcified blood containing A647 fibrinogen in flow chambers (Vena8 Fluoro+ Cellix) coated with collagen and tissue factor. In a second step, the perfusion of hirudinated blood in which platelets were stained by A488-RAM1 allowed to visualize platelet recruitment by fibrin rich clots. Results: Thrombin generation triggered by tissue factor was impaired in the PRP of patients with a GPVI deficiency or in the presence of the Fab 9O12 as indicated by a respective decrease in the peak height of 45 and 25% as compared to controls. This effect was observed regardless the trigger of thrombin generation and required platelet activation. Measuring thrombin generation in a purified system showed that fibrinogen dose-dependently increased the thrombin peak by up to 150% at 3 mg/mL but the Fab 9O12 blunted this effect. Moreover, the Fab 9O12 had no effect on thrombin generation in the PRP of a fibrinogen-deficient patient confirming a GPVI/fibrin(ogen)interplay. Blocking fibrin polymerization by GPRP reduced the thrombin peak in normal PRP, in fibrinogen-supplemented PRP of the fibrinogen-deficient patient and in purified conditions. In contrast GPRP had no effect on the thrombin peak in normal PRP containing the Fab 9O12 and in the PRP of GPVI-deficient patients. The proof that GPVI specifically interacts with fibrin was obtained in a binding assay showing a dose-dependent binding of GPVI-Fc to fibrin polymers that was reversed by the Fab 9O12. Platelets adhered to polymerized fibrin resulting in platelet shape change and exposure of phosphatidylserine. Platelet adhesion on a fibrin network was observed at low (300 s-1) and high (1500 s-1) shear rates with the formation of small contractile thrombi. Adhesion was decreased by 62% for 9O12-treated platelets and by 43% with the blood of GPVI-deficient mice as compared to controls. Importantly, lack of GPVI or its blockade decreased stationary adhesion indicating that GPVI is required to stabilize the interactions between platelets and fibrin. Finally when hirudinated blood was perfused at a shear rate of 1500 s-1 onto preformed fibrin-rich clots, the Fab 9O12 decreased the recruitment of platelets by up to 93%. Conclusions: Here we show for the first time that GPVI acts as a receptor for polymerized fibrin with two major functions: GPVI interaction with polymerized fibrin triggers (i) a new loop amplifying thrombin generation and (ii) platelet recruitment at the clot surface. These, so far, unrecognized properties of GPVI confer it a key role in the maturation of the thrombus by facilitating its growth and stabilization in addition to its well-known effect in the initiation of thrombus formation. Disclosures Jandrot-Perrus: Acticor Biotech: Other. Gachet:Acticor Biotech: Other.


Blood ◽  
1989 ◽  
Vol 73 (4) ◽  
pp. 961-967 ◽  
Author(s):  
L Badimon ◽  
JJ Badimon ◽  
VT Turitto ◽  
V Fuster

We have previously observed that von Willebrand factor (vWF) plays an important role in platelet deposition on subendothelium at low values of wall shear rate (200 to 400 seconds-1). In the present study, we have investigated the mechanism responsible for such a defect in platelet deposition at low shear rates in the absence of vWF. Blood from both normal and von Willebrand's disease (vWD) animals was exposed to de-endothelialized aorta from normal pigs for a range of shear rates (200 to 3,000 seconds-1) and exposure times (three to 30 minutes) in a tubular perfusion chamber. Variations in the method of inhibiting coagulation (none, heparin, citrate, hirudin, and EDTA) and of perfusing blood (in vitro v ex vivo) were compared by determining the influence of wall shear rate and vWF on the deposition of 111In-labeled platelets on subendothelium. Whereas platelet deposition was reduced in the absence of vWF for all experimental variations at high shear rates (greater than 850 seconds-1), a defect was observed at low shear rates only when heparinized blood was exposed by means of an ex vivo perfusion system. Maximum sensitivity of the measurement occurs under ex vivo perfusion conditions due to the reduced ability of platelets to deposit in normal blood when recirculated in vitro. Our results indicate that vWF mediates platelet-vessel wall interaction even at low shear rates and that such effect can only be observed in systems where platelet function is minimally affected by the experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document