Characterization of Antibodies Induced by Human Factor VIII in a Murine Knockout Model of Hemophilia A

2000 ◽  
Vol 84 (11) ◽  
pp. 826-832 ◽  
Author(s):  
Birgit Reipert ◽  
Rafi Ahmad ◽  
Peter Turecek ◽  
Hans Schwarz

SummaryTo investigate the usefulness of factor VIII (FVIII) knockout mice as an animal model of hemophilia A, we characterized the antibody response in FVIII knockout mice to recombinant human FVIII, administered intravenously or subcutaneously with or without adjuvant, and compared results to those in normal mice. Anti-factor VIII antibodies were detected after both intravenous and subcutaneous administration, with the highest titers after subcutaneous administration plus adjuvant. Depending on the administration strategy, knockout mice formed antibodies more rapidly and developed higher titers of inhibitory antibodies (Bethesda) than normal mice, suggesting differences in epitope specificity. Blotting thrombin cleavage products separated by gel electrophoresis showed that both strains developed antibodies against the nonfunctional B domain as well as against functional domains of factor VIII. The antibodies were mainly of the IgG1 subclass and resembled type I antibodies in hemophilia A.

Blood ◽  
2004 ◽  
Vol 104 (3) ◽  
pp. 704-710 ◽  
Author(s):  
Ernest T. Parker ◽  
John F. Healey ◽  
Rachel T. Barrow ◽  
Heather N. Craddock ◽  
Pete Lollar

AbstractApproximately 25% of patients with hemophilia A develop inhibitory antibodies after treatment with factor VIII. Most of the inhibitory activity is directed against epitopes in the A2 and C2 domains. Anti-A2 inhibitory antibodies recognize a 25-residue segment bounded by R484-I508. Several antigenic residues in this segment have been identified, including R484, R489, and P492. The immunogenicity of purified recombinant B domain–deleted (BDD) human factor VIII molecules containing mutations at R484A/R489A or R484A/R489A/P492A was studied in hemophilia A mice. Inhibitory antibody titers in mice receiving the R484A/R489A/P492A mutant, but not the R484A/R489A mutant, were significantly lower than in mice receiving control human BDD factor VIII. The specific coagulant activity and the in vivo clearance and hemostatic efficacy in hemophilia A mice of the R484A/R489A/P492A mutant were indistinguishable from human BDD factor VIII. Thus, the inhibitory antibody response to human factor VIII can be reduced by mutagenesis of a B-cell epitope without apparent loss of function, suggesting that this approach may be useful for developing a safer form of factor VIII in patients with hemophilia A.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2247-2247
Author(s):  
Rebecca Markovitz ◽  
John (Pete) S. Lollar ◽  
John F. Healey ◽  
Ernest T Parker ◽  
Shannon Meeks

Abstract Abstract 2247 Hemophilia A is an X-linked recessive disorder that is caused by a deficiency or defect of factor VIII (fVIII) coagulant protein. The major complication of treatment is the development of anti-fVIII antibodies (inhibitors) in approximately 20–30% of patients with severe hemophilia A. The majority of these inhibitors are directed against the A2 or C2 domains (Prescott R et al. Blood 1997). This study examines the structural and functional diversity of the humoral immune response to the A2 domain of human fVIII. A panel of 24 murine anti-A2 monoclonal antibodies (MAbs) produced in our laboratory plus MAb413 (American Red Cross) and GMA012 (Green Mountain, Burlington, VA) were used in this study. Previous studies have shown that anti-C2 MAbs produced from murine anti-fVIII hybridomas had a similar spectrum of epitopes to those found in inhibitor patient plasmas (Meeks SL et al. Blood 2008). A competition sandwich ELISA with immobilized anti-A2 primary MAb, human fVIII, biotinylated anti-A2 secondary MAb and streptavidin–alkaline phosphatase conjugate for detection was used to determine overlapping epitopes. Each antibody was used as both a capture and detection antibody. Antibody pairs were classified as having non-overlapping or overlapping epitopes based on whether the binding of the secondary antibody was present or absent, respectively. Porcine/human hybrid fVIII proteins were employed in a direct ELISA to fine map the epitopes of the anti-A2 MAbs. The results of both the competition and human/porcine mapping ELISAs were compiled into a Venn diagram describing overlapping epitopes for all MAbs. Functional mapping of the MAbs included fVIII inhibitor titers by modified Bethesda assay, inhibition in a purified intrinsic Xase assay, and inhibition of thrombin cleavage of fVIII. Thrombin activation assays were run with varying concentrations of MAbs, and fVIII cleavage by thrombin was analyzed by SDS-PAGE. The competition ELISA results demonstrated 7 non-overlapping epitopes on the A2 domain of human fVIII (Figure 1). In addition, the human/porcine mapping ELISA revealed that the epitopes of the anti-A2 MAbs covered the majority of the A2 domain. The inhibitor titers of the anti-A2 MAbs ranged from non-inhibitory to 40,000 Bethesda units (BU)/mg IgG (Table). The inhibitory MAbs displayed both type I (greater than 95% inhibition at saturating MAb concentrations) and type II-(incomplete inhibition at saturating MAb concentrations) behavior. MAb413, a group D MAb, noncompetitively inhibits factor VIIIa cofactor activity without affecting thrombin cleavage. 2–54, a group G MAb, inhibits thrombin cleavage of both heavy and light chains. In contrast, 1D4, which overlaps groups B, E, and F, only inhibited light chain cleavage. Overall these results indicate that the humoral immune response to the A2 domain of fVIII is complex in terms of both structural and functional epitopes. These anti-A2 MAbs were found to target 7 non-overlapping epitopes spanning the majority of the A2 domain. Elucidation of the structural and functional complexity of the anti-A2 repertoire will lead to a better understanding of the pathogenicity of A2 inhibitors.Table:A2 MAb CharacteristicsMAbInhibitor Titer (BU/mg)GroupStructural EpitopeB25100A444–5082G10500B468–484G323000C468–508MAb41321,000D484–5082–934E541–604B664000F604–7402–5433,000G508–541, 604–740 Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3186-3186
Author(s):  
Peiqing Ye ◽  
Carol H. Miao

Abstract Formation of inhibitory antibodies to transgene product may limit the success of gene therapy especially for the treatment of hemophilia A. The risk of forming inhibitory antibodies against factor VIII depends on multiple factors. Previously we have shown that following naked gene transfer of fifty micrograms of a liver-specific, high-expressing factor VIII plasmid, pBS-HCRHPI-FVIIIA into hemophilia A mice (at least 60 days old), a robust humoral response was induced two weeks post plasmid injection despite of initial high-level gene expression of factor VIII (Ye et al. (2004) Mol. Ther. 10, 117–126). This response completely inhibited the activity of circulating factor VIII although factor VIII was persistently expressed in the liver. In this study, the cytokine production was characterized in human factor VIII-activated T cells from plasmid-treated and untreated hemophilic A mice, consistent with a response predominantly mediated by Th2-induced signals. Injection of plasmid DNA into 4 groups of hemophilia A mice (n=5, 60 days old) with 4 different doses (0.4, 2, 10, & 50 microgram per animal) resulted in vector dose-dependent expression of factor VIII. In addition, the two groups of mice with lower doses of plasmid DNA (0.4 & 2 microgram per animal) did not elicit any antibody response against factor VIII, whereas the two groups of mice with higher doses of plasmid DNA (10 & 50 microgram per animal) induced inhibitory antibody formation. Nevertheless, when the two groups of animals (n=4) with lower doses were treated with second injection of fifty microgram of factor VIII plasmid 180 days post plasmid delivery, all mice developed inhibitors suggesting no immune tolerance was induced by first injection of plasmids. Furthermore, fifty micrograms of factor VIII plasmids were injected into 4 groups of hemophilia A mice (n=5) of 4 different age groups (36, 48, 60 & 72 days). It was found that none of the mice with age 36 days at the time of plasmid injection developed inhibitors, 1/5 mice with age 48 days developed inhibitors, whereas the two groups of mice with age 60 & 72 days all developed high-titer inhibitors. These results indicate that induction of anti-factor VIII antibody following gene therapy is strongly dependent upon the vector dose and age of the animals, which has important implication for developing immunomodulation or other strategies to avoid/eliminate antibody responses.


2017 ◽  
Vol 28 (5) ◽  
pp. 392-402 ◽  
Author(s):  
Jenny A. Greig ◽  
Qiang Wang ◽  
Amanda L. Reicherter ◽  
Shu-Jen Chen ◽  
Alexandra L. Hanlon ◽  
...  

1996 ◽  
Vol 76 (01) ◽  
pp. 017-022 ◽  
Author(s):  
Sylvia T Singer ◽  
Joseph E Addiego ◽  
Donald C Reason ◽  
Alexander H Lucas

SummaryIn this study we sought to determine whether factor VUI-reactive T lymphocytes were present in hemophilia A patients with inhibitor antibodies. Peripheral blood mononuclear cells (MNC) were obtained from 12 severe hemophilia A patients having high titer inhibitors, 4 severe hemophilia A patients without inhibitors and 5 normal male subjects. B cell-depleted MNC were cultured in serum-free medium in the absence or presence of 2 µg of recombinant human factor VIII (rFVIII) per ml, and cellular proliferation was assessed after 5 days of culture by measuring 3H-thymidine incorporation. rFVIII induced marked cellular proliferation in cultures of 4 of 12 inhibitor-positive hemophilia patients: fold increase over background (stimulation index, SI) of 7.8 to 23.3. The remaining 8 inhibitor-positive patients, the 4 hemophilia patients without inhibitors and the 5 normal subjects, all had lower proliferative responses to rFVIII, SI range = 1.6 to 6.0. As a group, the inhibitor-positive subjects had significantly higher proliferative responses to rFVIII than did the inhibitor-negative and normal subjects (p < 0.05 by t-test). Cell fractionation experiments showed that T lymphocytes were the rFVIII-responsive cell type, and that monocytes were required for T cell proliferation. Thus, rFVIII-reactive T lymphocytes are present in the peripheral circulation of some inhibitor-positive hemophilia A patients. These T cells may recognize FVIII in an antigen-specific manner and play a central role in the regulation of inhibitor antibody production


1966 ◽  
Vol 16 (03/04) ◽  
pp. 559-573 ◽  
Author(s):  
L Uszyński

SummaryRabbits immunized against human AHG fibrinogen-free preparations, were shown to produce anti-AHG antibodies. The inhibitory activity of these antibodies was tested by thromboplastin generation test, thrombelastography, and the specific anti-AHG antibodies neutralization test. The latter test permitted quantitative determination of antigenic form of factor VIII. The inhibitory activity of anti-FI-O-Ta serum resulted exclusively from the anti-AHG antibodies which in coagulation tests behaved like circulating anticoagulants directed against factor VIII.The anti-AHG antibodies were neutralizable by normal human serum or plasma even contained only trace of AHG activity after storage. There was no antigenic form of factor VIII in the severely affected patients with hemophilia A, von Willebrand’s disease nor in the normal plasma adsorbed on bentonite. The presented results suggest a molecular defect of factor VIII in patients with hemophilia A. The severe form of this disease depends, probably, on a major impairment of AHG biosynthesis, leading to changes in the antigenic properties of the molecule. The AHG from rabbit, porcine and bovine plasma respectively did not neutralize the anti-AHG antibodies formed in rabbits immunized against human factor VIII preparations.


Author(s):  
J. Schröder ◽  
V. Ivaskevicius ◽  
S. Rost ◽  
A. Müller ◽  
H.-H. Brackmann ◽  
...  

2001 ◽  
Vol 85 (01) ◽  
pp. 125-133 ◽  
Author(s):  
Huiyun Wu ◽  
Mark Reding ◽  
Jiahua Qian ◽  
David Okita ◽  
Ernie Parker ◽  
...  

SummaryMice genetically deficient in factor VIII (fVIII) are a model of hemophilia A. As a first step to reproduce in this mouse model what occurs over time in hemophilia A patients treated with human fVIII (hfVIII), we have investigated the time course and the characteristics of their immune response to hfVIII, after multiple intravenous injections. Anti-hfVIII antibodies appeared after four to five injections. They were IgG1 and to a lesser extent IgG2, indicating that they were induced by both Th2 and Th1 cells. Inhibitors appeared after six injections. CD4+ enriched splenocytes from hfVIII-treated mice proliferated in response to fVIII and secreted IL-10: in a few mice they secreted also IFN-γ and in one mouse IL-4, but never IL-2. A hfVIII-specific T cell line derived from hfVIII-treated mice secreted both IL-4 and IFN-γ, suggesting that it included both Th1 and Th2 cells. CD4+ enriched splenocytes of hfVIII-treated mice recognized all hfVIII domains. Thus, hemophilic mice develop an immune response to hfVIII administered intravenously similar to that of hemophilia A patients. Their anti-hfVIII antibodies can be inhibitors and belong to IgG subclasses homologous to those of inhibitors in hemophilic patients; their anti-hfVIII CD4+ cells recognize a complex repertoire and both Th1 and Th2 cytokines, and especially IL-10, may drive the antibody synthesis. Abbreviations used: antibodies, Ab; antigen presenting cells, APC; Arbitrary Units, AU; enzyme-linked immunosorbant assay, ELISA; factor VIII, fVIII; human factor VIII, hf VIII; intravenous, i.v.; optical density, OD; polymerase chain reaction, PCR; phosphate buffered saline solution, PBS; PBS containing 3% bovine serum albumin, PBS/BSA; PBS containing 0.05% polyoxyethylene sorbitan monolaurate, PBS/Tween-20; phytohemoagglutinin, PHA; stimulation index, SI


Blood ◽  
2008 ◽  
Vol 112 (7) ◽  
pp. 2713-2721 ◽  
Author(s):  
Qizhen Shi ◽  
Scot A. Fahs ◽  
David A. Wilcox ◽  
Erin L. Kuether ◽  
Patricia A. Morateck ◽  
...  

Abstract Although genetic induction of factor VIII (FVIII) expression in platelets can restore hemostasis in hemophilia A mice, this approach has not been studied in the clinical setting of preexisting FVIII inhibitory antibodies to determine whether such antibodies would affect therapeutic engraftment. We generated a line of transgenic mice (2bF8) that express FVIII only in platelets using the platelet-specific αIIb promoter and bred this 2bF8 transgene into a FVIIInull background. Bone marrow (BM) from heterozygous 2bF8 transgenic (2bF8tg+/−) mice was transplanted into immunized FVIIInull mice after lethal or sublethal irradiation. After BM reconstitution, 85% of recipients survived tail clipping when the 1100-cGy (myeloablative) regimen was used, 85.7% of recipients survived when 660-cGy (nonmyeloablative) regimens were used, and 60% of recipients survived when the recipients were conditioned with 440 cGy. Our further studies showed that transplantation with 1% to 5% 2bF8tg+/− BM cells still improved hemostasis in hemophilia A mice with inhibitors. These results demonstrate that the presence of FVIII-specific immunity in recipients does not negate engraftment of 2bF8 genetically modified hematopoietic stem cells, and transplantation of these hematopoietic stem cells can efficiently restore hemostasis to hemophilic mice with preexisting inhibitory antibodies under either myeloablative or nonmyeloablative regimens.


Sign in / Sign up

Export Citation Format

Share Document