Morphological and Biochemical Features Affecting the Antithrombotic Properties of the Aorta in Adult Rabbits and Rabbit Pups

1998 ◽  
Vol 79 (05) ◽  
pp. 1034-1040 ◽  
Author(s):  
E. Nitschmann ◽  
L. Berry ◽  
S. Bridge ◽  
M. W. C. Hatton ◽  
M. Richardson ◽  
...  

SummaryWe hypothesised that there are important physiologic differences in arterial wall structure and function with respect to antithrombotic activity in the very young (pre-puberty) compared to adults. Electron microscopy, gel electrophoresis, and activity assays were used to examine differences in aorta structure and function comparing prepubertal rabbits (pups) to adult rabbits. Differences in endothelial function, extracellular matrix structure, proteoglycan (PG) distribution and glycosaminoglycan (GAG) content and function were shown. In both intima and media, total PG, chondroitin sulfate (CS) PG and heparan sulfate (HS) PG content were significantly increased in pups compared to adult rabbits. These findings corresponded to increased concentrations by mass analyses of CS GAG and DS GAG in aortas from pups. There was also a significant increase in antithrombin activity in pups due to HS GAG. In conclusion, differences in both structure and antithrombin activity of aortas from pups compared to adult rabbits suggest that young arteries may have greater antithrombotic potential that is, at least in part, related to increased HS GAG.

1994 ◽  
Vol 267 (1) ◽  
pp. R124-R135 ◽  
Author(s):  
J. B. Michel ◽  
D. Heudes ◽  
O. Michel ◽  
P. Poitevin ◽  
M. Philippe ◽  
...  

The consequences of hypertension and aging on cardiovascular structure and function are reputed to be similar, suggesting that blood pressure plays a role in the aging process. However, the exact relationship between aging, blood pressure, and the arterial structure-function relationship has not been demonstrated. To test the effects of aging, renin-angiotensin system, and pressure on the arterial wall, 20 normotensive male WAG/Rij rats were killed at 6, 12, 24, and 30 mo of age and compared with similar groups treated with an angiotensin (ANG)-converting enzyme inhibitor (ACEI), perindopril. Arterial function was determined by a systemic hemodynamic study and by in situ measurement of carotid compliance. Arterial wall structure was determined by histomorphometric and biochemical methods. Aging did not significantly modify blood pressure, but ACE inhibition decreased blood pressure significantly from 6 to 30 mo. Plasma renin activity decreased with age and increased with ACEI. Plasma atrial natriuretic factor increased with age and was significantly decreased with ACEI. Absolute and relative left ventricular weight increased with age, and ACEI delayed these increases. Arterial wall stiffness increased with age, as shown by a significant decrease in systemic and local arterial compliance and by an increase in aortic characteristic impedance. The increase in carotid wall compliance after poisoning of smooth muscle contractile function (KCN) was greater in young (6- and 12-mo old) than in old (24- and 30-mo old) rats. Chronic ACEI treatment increased basal carotid compliance values slightly and did not change KCN carotid compliance. The aortic and carotid luminal size increased regularly with age. Aging was associated without any change in absolute elastin content. In contrast, collagen content increased with aging. Aging was also associated with an increase in medial thickness. Medial thickening was mainly due to smooth muscle hypertrophy. Aging was associated with intimal proliferation, which became progressively thicker and collagen rich. ACEI treatment did not prevent aortic lumen enlargement but significantly postponed the increase in medial and intimal thickening. Biochemical determinations of the aortic wall components confirmed the morphometric data. In conclusion, the age-dependent large artery enlargement and stiffening were observed both in normotensive rats and in those rats whose blood pressure was lowered by ACEI. This suggests that aging and blood pressure affect arterial wall structure and function by different mechanisms.


2014 ◽  
Vol 459 (2) ◽  
pp. 313-322 ◽  
Author(s):  
Christine Y. Chuang ◽  
Georg Degendorfer ◽  
Astrid Hammer ◽  
John M. Whitelock ◽  
Ernst Malle ◽  
...  

The extracellular matrix determines arterial wall structure and modulates the properties of associated cells. We show that the inflammation-associated oxidant peroxynitrous acid modifies human endothelial cell matrix, modulates gene expression and decreases cell adhesion, a key event in cardiovascular disease.


Drugs ◽  
1994 ◽  
Vol 47 (Supplement 2) ◽  
pp. 42-51 ◽  
Author(s):  
Thomas B. Clarkson ◽  
Mary S. Anthony ◽  
Karen Potvin Klein

Author(s):  
Robert L. Ochs

By conventional electron microscopy, the formed elements of the nuclear interior include the nucleolus, chromatin, interchromatin granules, perichromatin granules, perichromatin fibrils, and various types of nuclear bodies (Figs. 1a-c). Of these structures, all have been reasonably well characterized structurally and functionally except for nuclear bodies. The most common types of nuclear bodies are simple nuclear bodies and coiled bodies (Figs. 1a,c). Since nuclear bodies are small in size (0.2-1.0 μm in diameter) and infrequent in number, they are often overlooked or simply not observed in any random thin section. The rat liver hepatocyte in Fig. 1b is a case in point. Historically, nuclear bodies are more prominent in hyperactive cells, they often occur in proximity to nucleoli (Fig. 1c), and sometimes they are observed to “bud off” from the nucleolar surface.


1999 ◽  
Vol 82 (08) ◽  
pp. 271-276 ◽  
Author(s):  
Glen Spraggon ◽  
Stephen Everse ◽  
Russell Doolittle

IntroductionAfter a long period of anticipation,1 the last two years have witnessed the first high-resolution x-ray structures of fragments from fibrinogen and fibrin.2-7 The results confirmed many aspects of fibrinogen structure and function that had previously been inferred from electron microscopy and biochemistry and revealed some unexpected features. Several matters have remained stubbornly unsettled, however, and much more work remains to be done. Here, we review several of the most significant findings that have accompanied the new x-ray structures and discuss some of the problems of the fibrinogen-fibrin conversion that remain unresolved. * Abbreviations: GPR—Gly-Pro-Arg-derivatives; GPRPam—Gly-Pro-Arg-Pro-amide; GHRPam—Gly-His-Arg-Pro-amide


1992 ◽  
Vol 114 (3) ◽  
pp. 274-282 ◽  
Author(s):  
R. M. Nerem

Atherosclerosis, a disease of large- and medium-size arteries, is the chief cause of death in the United States and in most of the western world. Severe atherosclerosis interferes with blood flow; however, even in the early stages of the disease, i.e. during atherogenesis, there is believed to be an important relationship between the disease processes and the characteristics of the blood flow in the arteries. Atherogenesis involves complex cascades of interactions among many factors. Included in this are fluid mechanical factors which are believed to be a cause of the highly focal nature of the disease. From in vivo studies, there is evidence of hemodynamic influences on the endothelium, on intimal thickening, and on monocyte recruitment. In addition, cell culture studies have demonstrated the important effect of a cell’s mechanical environment on structure and function. Most of this evidence is for the endothelial cell, which is believed to be a key mediator of any hemodynamic effect, and it is now well documented that cultured endothelial monolayers, in response to a fluid flow-imposed laminar shear stress, undergo a variety of changes in structure and function. In spite of the progress in recent years, there are many areas in which further work will provide important new information. One of these is in the engineering of the cell culture environment so as to make it more physiologic. Animal studies also are essential in our efforts to understand atherogenesis, and it is clear that we need better information on the pattern of the disease and its temporal development in humans and animal models, as well as the specific underlying biologic events. Complementary to this will be in vitro model studies of arterial fluid mechanics. In addition, one can foresee an increasing role for computer modelling in our efforts to understand the pathophysiology of the atherogenic process. This includes not only computational fluid mechanics, but also modelling the pathobiologic processes taking place within the arterial wall. A key to the atherogenic process may reside in understanding how hemodynamics influences not only intimal smooth muscle cell proliferation, but also the recruitment of the monocyte/macrophage and the formation of foam cells. Finally, it will be necessary to begin to integrate our knowledge of cellular phenomena into a description of the biologic processes within the arterial wall and then to integrate this into a picture of the disease process itself.


2018 ◽  
Vol 39 (10) ◽  
pp. 105014 ◽  
Author(s):  
Jasmin Imsirovic ◽  
Erzsébet Bartolák-Suki ◽  
Samer Bou Jawde ◽  
Harikrishnan Parameswaran ◽  
Béla Suki

1999 ◽  
Vol 232 (1-2) ◽  
pp. 169-178 ◽  
Author(s):  
John M Robinson ◽  
Toshihiro Kobayashi ◽  
Harumichi Seguchi ◽  
Toshihiro Takizawa

Sign in / Sign up

Export Citation Format

Share Document