B Cell Dysfunction in Haemophilia in the Absence and Presence of HIV-1 Infection

1991 ◽  
Vol 65 (01) ◽  
pp. 007-010 ◽  
Author(s):  
R Madhok ◽  
J A Gracie ◽  
C D Forbes ◽  
G D O Lowe

Summary56 haemophiliacs selected on the basis of HIV-1 antibody status, liver disease grade and mean annual dose of clotting factor concentrate used were studied. Spontaneous and stimulated IgG and IgM production in vitro were measured. HIV-1 infection was associated with increased spontaneous immunoglobulin production and an impaired response to pokeweed mitogen and Staph Aureus protein A. Implying a shift in the proportions of partially and fully activated B cells.In the absence of HIV-L infection there was a shift to a greater proportion of partially activated B cells in patients with severe liver disease. The remainder had in vitro immunoglobulin production comparable to controls. B cell abnormalities occur early in the course of HIV-1 infection. Liver disease and not clotting factor concentrate treatment cause B cell abnormalities in the absence of HIV-1 infection in haemophilia.

1987 ◽  
Vol 165 (6) ◽  
pp. 1675-1687 ◽  
Author(s):  
A G Rolink ◽  
T Radaszkiewicz ◽  
F Melchers

A quantitative analysis of the frequencies of autoantibody-producing B cells in GVHD and in normal mice has been undertaken by generating collections of hybridomas of activated B cells. These hybridomas secreted sufficient quantities of Ig to allow binding analyses on a panel of autoantigens. B cells have been activated in a variety of ways. In vivo they were activated by injection of alloreactive T cells of one parent, leading to GVHD by a foreign antigen, sheep erythrocytes, in a secondary response, or by the polyclonal activator LPS. B cells from an experimentally unstimulated animal were used for an analysis of the normal background. In vitro B cells were activated by alloreactive T cells or by LPS. The frequencies of hybridomas and, therefore, of activated B cells producing autoantibodies to DNA or to kidney were not significantly different in mice activated by a graft-vs.-host T cell response as compared with B cell populations activated by any of the other procedures. They were found to compose 7.1-17.1% of the total repertoire of activated B cells. Moreover, the frequencies of autoantibody-producing activated B cells does not change with time after induction of the graft-vs.-host reaction. The pattern and frequencies of autoantigen-binding specificities to cytoskeleton, smooth muscle, nuclei, mitochondria, and DNA were not found to be different in any of the groups of hybridomas. The single notable exception, found in GVHD mice, were hybridomas producing autoantibodies to kidney proximal tubular brush border. These results allow the conclusion that autoantigen-binding B cells exist in an activated state in GVHD mice, as well as in mice activated by a foreign antigen or by a polyclonal activator, in B cell populations activated in vitro either by alloreactive T cells or by a polyclonal activator, and even in the background of experimentally unstimulated animals. T cell-mediated graft-vs.-host activation, in large part, does not lead to a selective expansion of autoantigen-binding B cells. The main difference between the graft-vs.-host-activated B cell repertoire and all others is that approximately 90% of teh autoantibodies were of the IgG class, whereas al autoantibodies found in the other groups were IgM.


PEDIATRICS ◽  
1980 ◽  
Vol 65 (3) ◽  
pp. 497-500
Author(s):  
Yukiaki Miyagawa ◽  
Kenichi Sugita ◽  
Atsushi Komiyama ◽  
Taro Akabane

Pokeweed mitogen-induced immunoglobulin (Ig) production by cord lymphocytes was studied in vitro by Ig-secreting plaque-forming cell (Ig-PFC) assay. Although adult mononuclear cells generated all of IgM-, IgG-, and IgA-PFC, cord mononuclear cells generated only IgM-PFC when cultured for seven days. The number of cord IgM-PFC was 102 ± 26/104 mononuclear cells, being about one fourth of that of adult IgM-PFC. When cultured for 14 days, cord mononuclear cells formed increased numbers of IgM-PFC in contrast to adult cells, and yielded IgG-PFC as well, indicating delayed Ig production. Cord T cells were much less effective at helping adult B cells to differentiate into Ig-PFC as compared with adult T cells. Substitution of adult T cells for cord T cell markedly improved the response of cord B cells. The present study demonstrates Ig secretion by cord lymphocytes in response to pokeweed mitogen stimulation. The results further indicate that the delayed Ig production by cord lymphocytes is largely due to functional immaturity of the T cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 935-935
Author(s):  
Yvonne A. Efebera ◽  
Tahamtan Ahmadi ◽  
Amanda Flies ◽  
David H. Sherr

Abstract Background: An increased understanding of the requirements for antigen presentation has encouraged development of cell-based cancer vaccines. Trials using dendritic cells (DC) as antigen presenting cells (APC) for immunotherapy of several malignancies have shown considerable success. However, the difficulty in generating large numbers of DC required for these immunizations has led to the search for alternative APC. One such candidate is the CD40 ligand (CD40L)-activated B cell, populations of which can readily be expanded in vitro. To be an effective vehicle for antigen presentation to T cells, CD40L-activated B cells must be capable of migrating to secondary lymphoid organs. Therefore, CD40L-activated B cell migration following subcutaneous or intravenous injection was evaluated. Methods: Splenic B cells from GFP transgenic mice were activated with CD40L + IL-4 and expanded in vitro prior to i.v. or s.c. injection of 3–4 x 107 into C57BL/6 mice. Recipient mice were sacrificed 2 hrs or 1–14 days thereafter and the percentage of GFP+/B220+ B cells quantified in spleens and lymph nodes by flow cytometry. Localization of these cells within lymphoid organs was determined by immunohistochemistry. In some experiments, activated C57BL/6 B cells were labeled with carboxy fluorescein succinimidyl ester (CFSE) to evaluate cell growth in vivo. Results: Murine B cell populations were readily expanded by culture on CD40L-transfected L cells in the presence of IL-4. CD40L-activated B cells expressed high levels of CD80, CD86, and LFA-1 but decreased levels of L-selectin relative to naive cells. Following i.v. injection, activated B cells were detected in spleens and lymph nodes within 1 day. Peak concentrations of activated B cells were noted in spleens and lymph nodes on days 7 (4.8% of injected cells) and 10 (1.25% of injected cells) respectively, suggesting expansion of the activated B cell population in vivo. Naive B cells injected i.v. were detected within 1 day but their number declined precipitously thereafter. Following s.c. injection, peak levels of CD40L-activated B cells were noted on day 5 (spleens) and day 7 (lymph nodes). As determined by immunohistochemistry, both CD40L-activated and naïve B cells injected i.v. appeared in B cell regions of spleens and lymph nodes. While the kinetics of accumulation of CD40L-activated B cells injected s.c. or i.v. were similar, s.c. injected CD40L-activated B cells homed to the T cell regions of spleens and lymph nodes. CFSE experiments indicated that these activated B cells continue to grow in vivo. In contrast, naïve B cells injected s.c. only appeared in B cell regions. Conclusion: CD40L-activated B cell populations can readily be expanded in vitro, CD40L-activated B cells migrate to secondary lymphoid organs even when injected s.c., activated B cell populations expand in vivo, and s.c. injected, CD40L-activated B cells preferentially home to T cell regions of secondary lymphoid organs. These results suggest that this effective APC may serve as an important vehicle for delivery and presentation of exogenous (e.g. tumor) antigens to T cells in vivo.


2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Shridhar Bale ◽  
Geraldine Goebrecht ◽  
Armando Stano ◽  
Richard Wilson ◽  
Takayuki Ota ◽  
...  

ABSTRACT We have demonstrated that a liposomal array of well-ordered trimers enhances B cell activation, germinal center formation, and the elicitation of tier-2 autologous neutralizing antibodies. Previously, we coupled well-ordered cleavage-independent NFL trimers via their C-terminal polyhistidine tails to nickel lipids integrated into the lipid bilayer. Despite favorable in vivo effects, concern remained over the potentially longer-term in vivo instability of noncovalent linkage of the trimers to the liposomes. Accordingly, we tested both cobalt coupling and covalent linkage of the trimers to the liposomes by reengineering the polyhistidine tail to include a free cysteine on each protomer of model BG505 NFL trimers to allow covalent linkage. Both cobalt and cysteine coupling resulted in a high-density array of NFL trimers that was stable in both 20% mouse serum and 100 mM EDTA, whereas the nickel-conjugated trimers were not stable under these conditions. Binding analysis and calcium flux with anti-Env-specific B cells confirmed that the trimers maintained conformational integrity following coupling. Following immunization of mice, serologic analysis demonstrated that the covalently coupled trimers elicited Env-directed antibodies in a manner statistically significantly improved compared to soluble trimers and nickel-conjugated trimers. Importantly, the covalent coupling not only enhanced gp120-directed responses compared to soluble trimers, it also completely eliminated antibodies directed to the C-terminal His tag located at the “bottom” of the spike. In contrast, soluble and noncovalent formats efficiently elicited anti-His tag antibodies. These data indicate that covalent linkage of well-ordered trimers to liposomes in high-density array displays multiple advantages in vitro and in vivo. IMPORTANCE Enveloped viruses typically encode a surface-bound glycoprotein that mediates viral entry into host cells and is a primary target for vaccine design. Liposomes with modified lipid head groups have a unique feature of capturing and displaying antigens on their surfaces, mimicking the native pathogens. Our first-generation nickel-based liposomes captured HIV-1 Env glycoprotein trimers via a noncovalent linkage with improved efficacy over soluble glycoprotein in activating germinal center B cells and eliciting tier-2 autologous neutralizing antibodies. In this study, we report the development of second-generation cobalt- and maleimide-based liposomes that have improved in vitro stability over nickel-based liposomes. In particular, the maleimide liposomes captured HIV-1 Env trimers via a more stable covalent bond, resulting in enhanced germinal center B cell responses that generated higher antibody titers than the soluble trimers and liposome-bearing trimers via noncovalent linkages. We further demonstrate that covalent coupling prevents release of the trimers prior to recognition by B cells and masks a nonneutralizing determinant located at the bottom of the trimer.


2015 ◽  
Vol 291 (4) ◽  
pp. 1826-1840 ◽  
Author(s):  
Ryo Ando ◽  
Hiroki Shima ◽  
Toru Tamahara ◽  
Yoshihiro Sato ◽  
Miki Watanabe-Matsui ◽  
...  

The transcription factor Bach2 regulates the immune system at multiple points, including class switch recombination (CSR) in activated B cells and the function of T cells in part by restricting their terminal differentiation. However, the regulation of Bach2 expression and its activity in the immune cells are still unclear. Here, we demonstrated that Bach2 mRNA expression decreased in Pten-deficient primary B cells. Bach2 was phosphorylated in primary B cells, which was increased upon the activation of the B cell receptor by an anti-immunoglobulin M (IgM) antibody or CD40 ligand. Using specific inhibitors of kinases, the phosphorylation of Bach2 in activated B cells was shown to depend on the phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway. The complex of mTOR and Raptor phosphorylated Bach2 in vitro. We identified multiple new phosphorylation sites of Bach2 by mass spectrometry analysis of epitope-tagged Bach2 expressed in the mature B cell line BAL17. Among the sites identified, serine 535 (Ser-535) was critical for the regulation of Bach2 because a single mutation of Ser-535 abolished cytoplasmic accumulation of Bach2, promoting its nuclear accumulation in pre-B cells, whereas Ser-509 played an auxiliary role. Bach2 repressor activity was enhanced by the Ser-535 mutation in B cells. These results suggest that the PI3K-Akt-mTOR pathway inhibits Bach2 by both repressing its expression and inducing its phosphorylation in B cells.


1980 ◽  
Vol 151 (1) ◽  
pp. 257-262 ◽  
Author(s):  
S Broder ◽  
D L Mann ◽  
T A Waldmann

We studied the effects of an antiserum to human Ia-like antigens (p23,30) upon the polyclonal activation of normal B cells (cultured with various combination of irradiated and unirradiated T cells) to become immunoglobulin-secreting cells after stimulation with pokeweed mitogen in vitro. We found that the antiserum suppressed immunoglobulin production. The inhibitory effect did not appear to result from a simple interaction at the B-cell/monocyte level alone. Rather, the inhibitory effect required the presence of a radiosensitive subset of autologous suppressor T cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 938-938
Author(s):  
Mitsufumi Nishio ◽  
Katsuya Fujimoto ◽  
Satoshi Yamamoto ◽  
Toshiya Sakai ◽  
Kohki Kumano ◽  
...  

Abstract Rituximab (RT) has been proven to be very effective in depleting normal and malignant B lymphocytes in vivo and it is widely used for the treatment of B cell malignancies, particularly B cell non-Hodgkin’s lymphoma (NHL). RT alone does not appear to cause severe hypogammaglobulinemia according to initial clinical trials. However, recent studies revealed that patients who received RT as an adjuvant to stem cell transplantation (SCT) demonstrated an increased risk of developing severe hypogammaglobulinemia. We have found such hypogammaglobulinemia to be due to the delayed recovery of CD27 positive memory B cells and an impaired isotype expression. (Nishio et al. Eur J Haematol, 2006). This finding suggests that RT can influence not only the quantity, but also the quality of B-cell redistribution. Nevertheless, to our knowledge, precisely how the B-cell repertoire regenerates after anti-CD20-mediated transient B-cell depletion in patients with NHL remains to be elucidated. To clarify this, we performed a phenotypical analysis of B cells. A total of 22 patients with NHL who received RT combined with autologous SCT (n=17) or CHOP (n=5) were evaluated to identify their immunophenotype. The median period after the last administration of RT was 33.5 months (range from 12 to 56 months). We investigated the expression of various markers, including CD27, CD38, CD40, CD80, CD86 and CD95 on B cells by immunofluorescence staining with a flowcytometry analysis. A statistically significant difference was noted in three of the six surface antigens when the expressions of those antigens were compared with those in the healthy control populations (N=14). The most striking differences we found was the expression levels of CD27. The healthy control group had a much higher expression of CD27 in comparison to those of the patients treated with RT (28.1±14.1% vs 8.2±6.1%, p<0.001). In addition, significant differences in the expression of CD40 and CD80 were also noted. While the positive rates of CD80 and CD40 on B cells from healthy controls were 21.5±10.8% and 80.5±16.7%, those of patients treated with RT were 9.9±6.9% and 49.7±33.5%, respectively (p<0.01 and p<0.05). Since CD40-CD40L and CD80-CD28 pathways between B and T cells are necessary for the development of CD27 positive polyclonal B-cell activation and immunoglobulin production, we hypothesized that the B cells from patients treated with RT thus had a reduced ability to differentiate into plasma cells and immunoglobulin production in vitro. To test this hypothesis, we purified the B cells from ten patients with NHL treated with RT and then cultured them upon the engagement of immunoglobulin receptor and CD40 in the presence of IL-2 and IL-10. After eight days of stimulation, the supernatants of the culture were harvested and the concentrations of immunoglobulin were measured by ELISA. As a result, the IgG production was found to be significantly impaired in patients with NHL in comparison to those from the healthy controls. The observation of a delayed recovery of the memory B cells with an abnormal cell marker expression and function demonstrates that naive B cells may therefore be responsible for their failure to differentiate into plasma cells after RT therapy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1114-1114
Author(s):  
Kristina Nalivaiko ◽  
Martin Hofmann ◽  
Ludger Grosse-Hovest ◽  
Peter H Krammer ◽  
Hans-Georg Rammensee ◽  
...  

Abstract Abstract 1114 Antibodies directed against the B-cell associated CD20 surface antigen can target normal as well as malignant B cells. They are sucessfully used for the treatment of B-cell derived leukemia and lymphoma and antibody mediated autoimmune disease, respectively. We have previously described that bispecific antibodies with specificity for CD20 and the death receptor CD95 are capable of inducing CD95 mediated apoptosis selectively in CD20-positive lymphoma cells. We now show that CD20 X CD95 hybrid antibodies induce apoptosis in pokeweed mitogen (PWM) activated B cells expressing CD95, but not in resting cells lacking it. Antibody production induced by PWM in vitro is profoundly inhibited. These results indicate that bispecific CD20 X CD95 antibodies may be used for the treatment of antibody mediated autoimmune disease. Compared to monospecific CD20 antibodies these reagents offer a new effector principle and specificity for activated rather than resting B cells. Disclosures: No relevant conflicts of interest to declare.


1997 ◽  
Vol 185 (6) ◽  
pp. 993-1004 ◽  
Author(s):  
Juha Punnonen ◽  
Benjamin G. Cocks ◽  
José M. Carballido ◽  
Bruce Bennett ◽  
David Peterson ◽  
...  

In this study it is shown that both membrane-bound and soluble forms of signaling lymphocytic activation molecule (SLAM) induce proliferation and Ig synthesis by activated human B cells. Activated B cells express the membrane-bound form of SLAM (mSLAM), the soluble (s) and the cytoplasmic (c) isoforms of SLAM, and the expression levels of mSLAM on B cells are rapidly upregulated after activation in vitro. Importantly, recombinant sSLAM and L cells transfected with mSLAM efficiently enhance B cell proliferation induced by anti-μ mAbs, anti-CD40 mAbs or Staphylococcus aureus Cowan I (SAC) in the presence or absence of IL-2, IL-4, IL-10, IL-12, or IL-15. sSLAM strongly enhances proliferation of both freshly isolated B cells and B cells derived from long-term in vitro cultures, indicating that SLAM acts not only during the initial phase of B cell activation but also during the expansion of preactivated B cells. In addition, sSLAM enhances production of IgM, IgG, and IgA by B cells activated by antiCD40 mAbs. SLAM has recently been shown to be a high affinity self-ligand, and the present data suggest that signaling through homophilic SLAM–SLAM binding during B–B and B–T cell interactions enhances the expansion and differentiation of activated B cells.


Sign in / Sign up

Export Citation Format

Share Document