Malondialdehyde Formation Induced By Different Collagens

1981 ◽  
Author(s):  
L Balleisen ◽  
J Rauterberg

To get close information about the characteristics of collagen induced MDA formation, platelet aggregation was induced by collagen type I, III a. V in dissolved and fibrillar form and by methylated type I collagen. The MDA formation was measured in the course of aggregation. In case of Meth.c. MDA production is induced also if under certain incubation conditions no aggregation is detectible.During the pl.aggr. induced by dissolved c. some MDA production was seen before the slope of the aggregation curve increased. Parallel to the increasing slope MDA increased fast, and some further increase over a 30 min. period was observed. For fibrillar and meth.c. MDA formation begins just with the increasing slope and reaches a stable plateau. In case of meth.c. the plateau is reached immediately after the maximum of aggregation occurred, in that of fibrillar c. some min. after maximal aggregation. For meth.c. the results obtained in the incubation system were comparable to that in the aggregation system.For meth.c. the kinetics of MDA formation in both systems were further defined. In both systems a concentration dependent saturation kinetic was obtained. In the aggregation system the concentration dependent increase of MDA formation was somewhat faster as in the incubation system and reached its saturation level at a lower collagen concentration.From the increasing and long lasting MDA formation induced by the interstitial collagens we might speculate that in vivo the stimulating activity of the collagens may work for a long time in conditions where the prostacyclin production of the vessel wall is decreased. The characteristics of MDA formation induced by meth.c. suggest that this c. may be a good tool for in vitro studies.

2020 ◽  
Vol 21 (8) ◽  
pp. 2835 ◽  
Author(s):  
Daniel Kronenberg ◽  
Philipp A. Michel ◽  
Eva Hochstrat ◽  
Ma Wei ◽  
Jürgen Brinckmann ◽  
...  

Integrins are a family of transmembrane proteins, involved in substrate recognition and cell adhesion in cross-talk with the extra cellular matrix. In this study, we investigated the influence of integrin α2β1 on tendons, another collagen type I-rich tissue of the musculoskeletal system. Morphological, as well as functional, parameters were analyzed in vivo and in vitro, comparing wild-type against integrin α2β1 deficiency. Tenocytes lacking integrin α2β1 produced more collagen in vitro, which is similar to the situation in osseous tissue. Fibril morphology and biomechanical strength proved to be altered, as integrin α2β1 deficiency led to significantly smaller fibrils as well as changes in dynamic E-modulus in vivo. This discrepancy can be explained by a higher collagen turnover: integrin α2β1-deficient cells produced more matrix, and tendons contained more residual C-terminal fragments of type I collagen, as well as an increased matrix metalloproteinase-2 activity. A greatly decreased percentage of non-collagenous proteins may be the cause of changes in fibril diameter regulation and increased the proteolytic degradation of collagen in the integrin-deficient tendons. The results reveal a significant impact of integrin α2β1 on collagen modifications in tendons. Its role in tendon pathologies, like chronic degradation, will be the subject of future investigations.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


Author(s):  
Michel Haagdorens ◽  
Elle Edin ◽  
Per Fagerholm ◽  
Marc Groleau ◽  
Zvi Shtein ◽  
...  

Abstract Purpose To determine feasibility of plant-derived recombinant human collagen type I (RHCI) for use in corneal regenerative implants Methods RHCI was crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form hydrogels. Application of shear force to liquid crystalline RHCI aligned the collagen fibrils. Both aligned and random hydrogels were evaluated for mechanical and optical properties, as well as in vitro biocompatibility. Further evaluation was performed in vivo by subcutaneous implantation in rats and corneal implantation in Göttingen minipigs. Results Spontaneous crosslinking of randomly aligned RHCI (rRHCI) formed robust, transparent hydrogels that were sufficient for implantation. Aligning the RHCI (aRHCI) resulted in thicker collagen fibrils forming an opaque hydrogel with insufficient transverse mechanical strength for surgical manipulation. rRHCI showed minimal inflammation when implanted subcutaneously in rats. The corneal implants in minipigs showed that rRHCI hydrogels promoted regeneration of corneal epithelium, stroma, and nerves; some myofibroblasts were seen in the regenerated neo-corneas. Conclusion Plant-derived RHCI was used to fabricate a hydrogel that is transparent, mechanically stable, and biocompatible when grafted as corneal implants in minipigs. Plant-derived collagen is determined to be a safe alternative to allografts, animal collagens, or yeast-derived recombinant human collagen for tissue engineering applications. The main advantage is that unlike donor corneas or yeast-produced collagen, the RHCI supply is potentially unlimited due to the high yields of this production method. Lay Summary A severe shortage of human-donor corneas for transplantation has led scientists to develop synthetic alternatives. Here, recombinant human collagen type I made of tobacco plants through genetic engineering was tested for use in making corneal implants. We made strong, transparent hydrogels that were tested by implanting subcutaneously in rats and in the corneas of minipigs. We showed that the plant collagen was biocompatible and was able to stably regenerate the corneas of minipigs comparable to yeast-produced recombinant collagen that we previously tested in clinical trials. The advantage of the plant collagen is that the supply is potentially limitless.


2009 ◽  
Vol 297 (6) ◽  
pp. C1358-C1367 ◽  
Author(s):  
Gerald J. Atkins ◽  
Katie J. Welldon ◽  
Asiri R. Wijenayaka ◽  
Lynda F. Bonewald ◽  
David M. Findlay

The vitamin K family members phylloquinone (vitamin K1) and the menaquinones (vitamin K2) are under study for their roles in bone metabolism and as potential therapeutic agents for skeletal diseases. We have investigated the effects of two naturally occurring homologs, phytonadione (vitamin K1) and menatetrenone (vitamin K2), and those of the synthetic vitamin K, menadione (vitamin K3), on human primary osteoblasts. All homologs promoted in vitro mineralization by these cells. Vitamin K1-induced mineralization was highly sensitive to warfarin, whereas that induced by vitamins K2 and K3 was less sensitive, implying that γ-carboxylation and other mechanisms, possibly genomic actions through activation of the steroid xenobiotic receptor, are involved in the effect. The positive effect on mineralization was associated with decreased matrix synthesis, evidenced by a decrease from control in expression of type I collagen mRNA, implying a maturational effect. Incubation in the presence of vitamin K2 or K3 in a three-dimensional type I collagen gel culture system resulted in increased numbers of cells with elongated cytoplasmic processes resembling osteocytes. This effect was not warfarin sensitive. Addition of calcein to vitamin K-treated cells revealed vitamin K-dependent deposition of mineral associated with cell processes. These effects are consistent with vitamin K promoting the osteoblast-to-osteocyte transition in humans. To test whether vitamin K may also act on mature osteocytes, we tested the effects of vitamin K on MLO-Y4 cells. Vitamin K reduced receptor activator of NF-κB ligand expression relative to osteoprotegerin by MLO-Y4 cells, an effect also seen in human cultures. Together, our findings suggest that vitamin K promotes the osteoblast-to-osteocyte transition, at the same time decreasing the osteoclastogenic potential of these cells. These may be mechanisms by which vitamin K optimizes bone formation and integrity in vivo and may help explain the net positive effect of vitamin K on bone formation.


2001 ◽  
Vol 204 (3) ◽  
pp. 443-455
Author(s):  
C. Faucheux ◽  
S. Nesbitt ◽  
M. Horton ◽  
J. Price

Deer antlers are a rare example of mammalian epimorphic regeneration. Each year, the antlers re-grow by a modified endochondral ossification process that involves extensive remodelling of cartilage by osteoclasts. This study identified regenerating antler cartilage as a site of osteoclastogenesis in vivo. An in vitro model was then developed to study antler osteoclast differentiation. Cultured as a high-density micromass, cells from non-mineralised cartilage supported the differentiation of large numbers of osteoclast-like multinucleated cells (MNCs) in the absence of factors normally required for osteoclastogenesis. After 48 h of culture, tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells (osteoclast precursors) were visible, and by day 14 a large number of TRAP-positive MNCs had formed (783+/−200 per well, mean +/− s.e.m., N=4). Reverse transcriptase/polymerase chain reaction (RT-PCR) showed that receptor activator of NF κ B ligand (RANKL) and macrophage colony stimulating factor (M-CSF) mRNAs were expressed in micromass cultures. Antler MNCs have the phenotype of osteoclasts from mammalian bone; they expressed TRAP, vitronectin and calcitonin receptors and, when cultured on dentine, formed F-actin rings and large resorption pits. When cultured on glass, antler MNCs appeared to digest the matrix of the micromass and endocytose type I collagen. Matrix metalloproteinase-9 (MMP-9) may play a role in the resorption of this non-mineralised matrix since it is highly expressed in 100 % of MNCs. In contrast, cathepsin K, another enzyme expressed in osteoclasts from bone, is only highly expressed in resorbing MNCs cultured on dentine. This study identifies the deer antler as a valuable model that can be used to study the differentiation and function of osteoclasts in adult regenerating mineralised tissues.


1984 ◽  
Vol 4 (9) ◽  
pp. 1843-1852
Author(s):  
R J Focht ◽  
S L Adams

We analyzed the control of type I collagen synthesis in four kinds of differentiated cells from chicken embryos which synthesize very different amounts of the protein. Tendon, skin, and smooth muscle cells were found to have identical amounts of type I collagen RNAs; however, the RNAs had inherently different translatabilities, which were observed both in vivo and in vitro. Chondrocytes also had substantial amounts of type I collagen RNAs, even though they directed no detectable synthesis of the protein either in vivo or in vitro. Type I collagen RNAs in chondrocytes display altered electrophoretic mobilities, suggesting that in these cells the reduction in translational efficiency may be mediated in part by changes in the RNA structure. These data indicate that control of type I collagen gene expression is a complex process which is exerted at both transcriptional and post-transcriptional levels.


2005 ◽  
Vol 94 (12) ◽  
pp. 1213-1218 ◽  
Author(s):  
Marco Eugster ◽  
Walter H. Reinhart

SummaryPrimary haemostasis consists of platelet adhesion to subendothelial collagen, their activation and aggregation and finally the formation of a platelet plug. Erythrocytes are involved in this process because they flow in the center of the vessel and push platelets towards the site of action on the vessel wall and enhance shear forces, which activate platelets. In the platelet function analyzer PFA-100® (Dade Behring, Düdingen, Switzerland), the in vivo situation is simulated in vitro with blood being aspirated at high shear rates (5000s-1) through a capillary into a membrane pore with a diameter of 150 μm coated with type I collagen and either epinephrine or adenosine diphosphate. Aggregating platelets plug the pore and stop the flow, which is measured as the closure time. We analysed the influence of erythrocytes on platelet function analyzer measurements by systematic variation of the haematocrit (20,30,40,and 50%) at constant platelet counts of 289±61 ×103/μl plasma, or 152±30 ×103/μl blood, 96±9 ×103/μl blood and 54±5 ×103/μl blood, respectively. An inverse correlation was found between haematocrit and closure time under all circumstances. A decrease of the platelet count by 50 ×103 /μl could be compensated for by a 10% increase in haematocrit. The haematocrit must, therefore, be taken into consideration for the correct interpretation of PFA-100® measurements. Our data also provide a pathophysiological rationale to reduce the risk of bleeding in patients with thrombocytopenia and anaemia by normalizing the haematocrit with erythrocyte transfusions.


2017 ◽  
Vol 312 (3) ◽  
pp. G219-G227 ◽  
Author(s):  
Leonie Beljaars ◽  
Sara Daliri ◽  
Christa Dijkhuizen ◽  
Klaas Poelstra ◽  
Reinoud Gosens

WNT-5A is a secreted growth factor that belongs to the noncanonical members of the Wingless-related MMTV-integration family. Previous studies pointed to a connection between WNT-5A and the fibrogenic factor TGF-β warranting further studies into the functional role of WNT-5A in liver fibrosis. Therefore, we studied WNT-5A expressions in mouse and human fibrotic livers and examined the relation between WNT-5A and various fibrosis-associated growth factors, cytokines, and extracellular matrix proteins. WNT-5A gene and protein expressions were significantly increased in fibrotic mouse and human livers compared with healthy livers. Regression or therapeutic intervention in mice resulted in decreased hepatic WNT-5A levels paralleled by lower collagen levels. Immunohistochemical analysis showed WNT-5A staining in fibrotic septa colocalizing with desmin staining indicating WNT-5A expression in myofibroblasts. In vitro studies confirmed WNT-5A expression in this cell type and showed that TGF-β significantly enhanced WNT-5A expression in contrast to PDGF-BB and proinflammatory cytokines IL-1β and TNF-α. Additionally, TGF-β induces the expression of the WNT receptors FZD2 and FZD8. After silencing of WNT-5A, reduced levels of collagen type I, vimentin, and fibronectin in TGF-β-stimulated myofibroblasts were measured compared with nonsilencing siRNA-treated controls. Interestingly, the antifibrotic cytokine IFNγ suppressed WNT-5A in vitro and in vivo. IFNγ-treated fibrotic mice showed significantly less WNT-5A expression compared with untreated fibrotic mice. In conclusion, WNT-5A paralleled collagen I levels in fibrotic mouse and human livers. WNT-5A expression in myofibroblasts is induced by the profibrotic factor TGF-β and plays an important role in TGF-β-induced regulation of fibrotic matrix proteins, whereas its expression can be reversed upon treatment, both in vitro and in vivo. NEW & NOTEWORTHY This study describes the localization and functional role of WNT-5A in human and mouse fibrotic livers. Hepatic WNT-5A expression parallels collagen type I expression. In vivo and in vitro, the myofibroblasts were identified as the key hepatic cells producing WNT-5A. WNT-5A is under control of TGF-β and its activities are primarily profibrotic.


Sign in / Sign up

Export Citation Format

Share Document