Computed Tomographic Evaluation of Adjacent Segment Motion after Ex Vivo Fusion of Equine Third and Fourth Cervical Vertebrae

2019 ◽  
Vol 33 (01) ◽  
pp. 001-008
Author(s):  
Nicole Schulze ◽  
Anna Ehrle ◽  
Renate Weller ◽  
Guido Fritsch ◽  
Jennifer Gernhardt ◽  
...  

Objective Surgical fusion of vertebral segments is a treatment option for horses with cervical stenotic myelopathy or cervical fracture.Degenerative disease affecting adjacent vertebral segments is a reported complication following surgical vertebral fusion in other species, termed adjacent segment disease. The aim of this study was to evaluate the impact of cervical vertebral fusion on the biomechanics of adjacent vertebral segments in the horse. Study Design Neck specimens of 12 horses were assessed using computed tomographic imaging. Range of motion (ROM) was determined by measuring the maximum sagittal flexion, extension and lateral bending between C2 and C5. C3/4 was subsequently fused using a standard locking compression plate and locking head screws and computed tomographic scans and ROM measurements were repeated. Results Prior to intervertebral fusion, a significant increase in ROM along the vertebral segments from cranial to caudal was observed. Range of motion measurements of C3/4 decreased significantly after fusion (p = 0.01).Range of motion of the adjacent segments (C2/3 and C4/5) did not change significantly after fusion. Conclusion Fusion of one cervical intervertebral joint did not affect the ROM of the adjacent vertebral segments. Further research investigating the implications of vertebral fusion on the intervertebral pressure in the equine patient is indicated.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zewen Shi ◽  
Lin Shi ◽  
Xianjun Chen ◽  
Jiangtao Liu ◽  
Haihao Wu ◽  
...  

Abstract Background The superior facet arthroplasty is important for intervertebral foramen microscopy. To our knowledge, there is no study about the postoperative biomechanics of adjacent L4/L5 segments after different methods of S1 superior facet arthroplasty. To evaluate the effect of S1 superior facet arthroplasty on lumbar range of motion and disc stress of adjacent segment (L4/L5) under the intervertebral foraminoplasty. Methods Eight finite element models (FEMs) of lumbosacral vertebrae (L4/S) had been established and validated. The S1 superior facet arthroplasty was simulated with different methods. Then, the models were imported into Nastran software after optimization; 500 N preload was imposed on the L4 superior endplate, and 10 N⋅m was given to simulate flexion, extension, lateral flexion and rotation. The range of motion (ROM) and intervertebral disc stress of the L4-L5 spine were recorded. Results The ROM and disc stress of L4/L5 increased with the increasing of the proportions of S1 superior facet arthroplasty. Compared with the normal model, the ROM of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 2/5 from the apex to the base. The disc stress of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 1/5 from the apex to the base. Conclusion In this study, the ROM and disc stress of L4/L5 were affected by the unilateral S1 superior facet arthroplasty. It is suggested that the forming range from the ventral to the dorsal should be less than 3/5 of the S1 upper facet joint. It is not recommended to form from apex to base. Level of evidence Level IV


2021 ◽  
Vol 2 ◽  
Author(s):  
Alejandra Aranceta-Garza ◽  
Karyn Ross

Objective: Wrist-hand orthoses (WHOs) are prescribed for a range of musculoskeletal/neurological conditions to optimise wrist/hand position at rest and enhance performance by controlling its range of motion (ROM), improving alignment, reducing pain, and optimising grip strength. The objective of this research was to study the efficacy and functionality of ten commercially available WHOs on wrist ROM and grip strength.Design: Randomised comparative functional study of the wrist/hand with and without WHOs.Participants: Ten right-handed female participants presenting with no underlying condition nor pain affecting the wrist/hand which could influence motion or grip strength. Each participant randomly tested ten WHOs; one per week, for 10 weeks.Main outcome measures: The primary outcome was to ascertain the impact of WHOs on wrist resting position and flexion, extension, radial, and ulnar deviation. A secondary outcome was the impact of the WHOs on maximum grip strength and associated wrist position when this was attained.Results: From the 2,400 tests performed it was clear that no WHO performed effectively or consistently across participants. The optimally performing WHO for flexion control was #3 restricting 86.7%, #4 restricting 76.7% of extension, #9 restricting 83.5% of radial deviation, and #4 maximally restricting ulnar deviation. A grip strength reduction was observed with all WHOs, and ranged from 1.7% (#6) to 34.2% (#4).Conclusion: WHOs did not limit movement sufficiently to successfully manage any condition requiring motion restriction associated with pain relief. The array of motion control recorded might be a contributing factor for the current conflicting evidence of efficacy for WHOs. Any detrimental impact on grip strength will influence the types of activities undertaken by the wearer. The design aspects impacting wrist motion and grip strength are multifactorial, including: WHO geometry; the presence of a volar bar; material of construction; strap design; and quality of fit. This study raises questions regarding the efficacy of current designs of prefabricated WHOs which have remained unchanged for several decades but continue to be used globally without a robust evidence-base to inform clinical practise and the prescription of these devices. These findings justify the need to re-design WHOs with the goal of meeting users' needs.


2016 ◽  
Vol 57 (5) ◽  
pp. 482-488 ◽  
Author(s):  
Stefanie Veraa ◽  
Wilhelmina Bergmann ◽  
Antoon-Jan van den Belt ◽  
Inge Wijnberg ◽  
Willem Back

Author(s):  
Enoch Leung ◽  
Nesrin Sarigul-Klijn ◽  
Rolando F. Roberto

Klippel Feil Syndrome (KFS) is a congenital disorder characterized by failure of segmentation of cervical vertebrae, resulting in “fusions” at any level of the cervical spine. Clinical diagnosis of KFS occurs at a mean age of 7.1 years, with children diagnosed with KFS often exhibiting reduced motion and function characterized by reduction of upward and downward motions of the head on the neck (flexion/extension), axial rotation, and tilting of the head side to side (lateral bending). More importantly, however, previous KFS studies have acknowledged possible compromises to the structural integrity and overall health of the cervical spine in the presence of abnormal fusion. Instances of instabilities such as fracture and large amounts of mobility at vertebral segments adjacent to fusion have been recorded, both posing significant neurological and physiological dangers to an individual afflicted with KFS. While fusion and instability appear to be interrelated, more intrinsic evaluation of KFS-related instabilities is needed. Current KFS studies, relying predominantly on static radiographic modalities, have been unsuccessful in identifying factors contributing to craniocervical (CC) destabilization in the presence of congenital vertebral fusion. It has been hypothesized that fusion of vertebral bodies induces abnormal stress distributions that catalyze instances of fracture along any KFS spine segment. Using Finite Element (FE) Modeling and Analysis to characterize motion alterations and irregular stress patterns associated with vertebral fusion, a high fidelity computational representation of a KFS affected cervical spine segment spanning the base of the occiput to C6 was constructed. Computer Tomography (CT) images were used for vertebral reconstruction with soft tissue components such as intervertebral discs (IVDs), articular cartilages (ACs), and the transverse ligament were modeled as homogenous solid components.


2020 ◽  
Vol 72 (4) ◽  
pp. 1221-1230
Author(s):  
G.A.C. Diamante ◽  
P.V.T. Marinho ◽  
C.C. Zani ◽  
M.V. Bahr Arias

ABSTRACT Traumatic events such as a motor vehicle accident or falling from heights are very common in veterinary medicine and often lead to vertebral fracture-luxation with concomitant spinal cord injuries, mostly in the thoracolumbar spine. The purpose of this cadaveric biomechanical study was to determine the feasibility of the three-column concept in canine thoracolumbar segments with induced fractures. Eighteen Functional Spinal Units (FSU) of the thoracolumbar segments (T12-L2) were collected from 18 medium-sized adult dog cadavers and were subjected to flexion-extension and lateral bending tests so that range of motion (ROM) was recorded with a goniometer. Fractures were induced by compressive loads applied by a universal testing machine (EMIC®). After this, specimens were screened using computed tomography (CT) and the fractures were graded as affecting one, two or three columns, and divided into groups A, B, and C, respectively. Post-fracture range of motion (ROM) was compared with the previous results. Groups B and C (with fractures in two or three columns) had instability in the two axes evaluated (P<0.05). The outcomes of this study support the applicability of the three-column theory to thoracolumbar spines of dogs, as the FSUs that suffered fractures in two or more columns showed axial instability.


2021 ◽  
Author(s):  
Zewen Shi ◽  
Lin Shi ◽  
Xianjun Chen ◽  
Jiangtao Liu ◽  
Haihao Wu ◽  
...  

Abstract Background. The superior facet arthroplasty is important for intervertebral foramen microscopy. To our knowledge, no study about the postoperative biomechanics of adjacent L4/L5 segments after different methods of S1 superior facet arthroplasty. To evaluate the effect of S1 superior facet arthroplasty on lumbar range of motion and disc stress of adjacent segment (L4/L5) under the intervertebral foramina plasty.Methods. Eight finite element models (FEMs) of lumbosacral vertebrae (L4/S) had been established and validated. The S1 superior facet arthroplasty was simulated with different methods. Then, the models were imported into Nastran software after optimization. 500N preload was imposed on the L4 superior endplate and 10 Nm was given to simulate flexion, extension, lateral flexion and rotation. The range of motion (ROM) and intervertebral disc stress of L4-L5 spine were recorded.Results. The ROM and disc stress of L4/L5 increased with the increasing of the proportions of S1 superior facet arthroplasty. Compared with the normal model, the ROM of L4/L5 significantly increase in most directions of motion when S1 superior facet formed greater than 3/5 from ventral to dorsal or 2/5 from apex to base. The disc stress of L4/L5 significantly increase in most directions of motion when S1 superior facet formed greater than 3/5 from ventral to dorsal or 1/5 from apex to base.Conclusion. In this study, the ROM and disc stress of L4/L5 were effected by the unilateral S1 superior facet arthroplasty. It is suggested that the forming range from ventral to dorsal should be less than 3/5 of S1 upper facet joint. It is not recommended to form from apex to base.


2019 ◽  
pp. 121-131

Introduction: Breast cancer is the most common type of cancer among women in Brazil and in the worl. The surgical treatment procedure may cause severe morbidity in the upper limb homolateral to surgery, including the reduction of the range of motion, with consequent impairment of function. A physiotherapeutic approach has an important role in the recover range of motion and the functionality of these women, guaranteeing the occupational, domestestic, familiar and conjugated activities, and, in this way, also improving the quality of life. Objectives: To analyse chances in the shoulder's range of motion and the functional capacity of the upper limbs, promoted by the deep running procedure in women with late postoperative mastectomy. Methods: All the patients were submitted to an evaluation in the beginning and end of the treatment, including: goniometry of flexion, extension, abduction, adduction, internal and external rotation of the shoulder joint; and function capacity analysis in activities that involve the upper members by DASH questionnaire. The treatment protocol includes twelve sessions of deep running, realized twice a week, in deep pool, for 20-minute during six weeks. Results: Were submitted to treatment a total of 4 patients. Despite the improvement in the numerical values, statistically significant differences were not found on the range of movements and in the functional capacity of upper members before and after the deep running sessions in post-mastectomy women. Conclusion: Deep running had effects on the numerical values of range of movement and upper limb functionality in women in the late postoperative period of the mastectomy procedure, but without statistically significant differences.


2018 ◽  
Author(s):  
Claudia Nava ◽  
Patrizio Sale ◽  
Vittorio Leggero ◽  
Simona Ferrante ◽  
Cira Fundaro' ◽  
...  

BACKGROUND In recent years, different smartphone apps have been validated for joint goniometry, but none for goniometric assessment of gait after stroke. OBJECTIVE The aims of our work were to assess:1) to assess intra-rater reliability of an image-based goniometric app – DrGoniometer- in the measurement of the extension, flexion angles and range of motion of the knee during the hemiparetic gait of a stroke patient; (2) its validity comparing to the reference method (electrogoniometer) for flexion-extension excursion measurements; and the intra-rater agreement in the choice of the video frames. METHODS An left-hemiparetic inpatient following haemorrhagic stroke was filmed using the app while walking on a linear path. An electrogoniometer was fixed on the medial face of the affected knee in order to record the dynamic goniometry during gait. Twenty-one raters, blinded to measurements, were recruited to rate knee angle measurements from video acquired with DrGoniometer. Each rater repeated the same procedure twice, the second one at least one day after the first measure. RESULTS Results showed that flexion angle measurements are reliable (ICC95%=0.66, 0.34;0.85; SEM=4°), and adequately precise (CV=14%). Extension angles measurements demonstrated moderate reliability and higher degree of variation (ICC=0.51, 0.09;0.77; SEM 4°; CV=53%). ROM values were: ICC=0.23 (-0.21;0.60); CV=20%. Accuracy of DrGoniometer compared to the electrogoniometer was 7.3±4.7°. The selection of maximum extension frame revealed an accordance of 58% and 72% within a range of ±5 or ±10 frames, respectively; while the best flexion frame reported 86% of agreement for both range of 5 and 10 frames. CONCLUSIONS The results demonstrated moderate to good reliability concerning the maximum extension and flexion angles, while assessing ROM DrGoniometer showed poor intra-rater reliability. Flexion angle measurements seemed to be reliable according to ICC and SEM values and more precise with a limited dispersion of results DrGoniometer revealed a good accuracy in the measurement of range of motion. The agreement of the maximal extension frame was anyway adequate within 5 frames (59%) and noticeably increased within 10 frames (72%). In conclusion, DrGoniometer was found to be a valid and reliable method for assessing knee angles during hemiparetic gait. Further studies are necessary to investigate inter-rater reliability and confirm our results.


Sign in / Sign up

Export Citation Format

Share Document