Identification of novel therapeutic approaches in a xenograft model of juvenile myelomonocytic leukemia (JMML)

2020 ◽  
Author(s):  
J Rajak ◽  
Y Wu ◽  
N Koleci ◽  
CM Niemeyer ◽  
M Erlacher
Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1655-1655
Author(s):  
Christopher Felix Krombholz ◽  
Angelina Meier ◽  
Konrad Aumann ◽  
Silvia Fluhr ◽  
Matthias Kollek ◽  
...  

Abstract Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative disorder of early childhood with often fatal outcome. Despite many attempts to develop alternative treatment options allogeneic hematopoietic stem cell transplantation (HSCT) remains the only curative modality. In the past our group has linked the prognosis of JMML to differential DNA methylation patterns (Olk-Batz, Blood 2011;117:4871-80 and Poetsch, Epigenetics 2014;9:1252-60), suggesting a key role of epigenetic modifications in JMML pathophysiology. To overcome the lack of suitable preclinical JMML research models we have developed an ex vivo JMML xenotransplantation system using neonatal Rag2-/- gamma-c-/- mice. Transplantation of 1x106 primary JMML cells resulted in stable xenologous engraftment and reproduced a characteristic JMML phenotype including myelomonocytic expansion; infiltration of spleen, liver and, notably, lung; splenomegaly; and reduced survival (median 26 weeks). Persistent human engraftment and leukemic organ infiltration was confirmed by both flow cytometry and immunohistology. Ras pathway mutations present in xenotransplanted patient samples were invariably confirmed in engrafted tissues. In addition, the model sustained serial transplantations and can therefore be used to amplify scarce patient material. We first tested if DNA methylation patterns in JMML cells were stable even after xenologous engraftment because such stability would be a prerequisite if the model were to be used for preclinical investigation of DNA methyltransferase inhibitors. JMML cells before xenotransplantation and those retrieved from the bone marrow of engrafted mice were profiled for global CpG methylation using Illumina 450K arrays. DNA methylation patterns in JMML were patient-specific and surprisingly robust in functional regions over several months of engraftment time (on average, 0.29% of 30877 promoters and 0.25 % of 30725 intragenic regions were called as "differentially methylated" between source and xenograft; 0.2 β-value change cutoff). These findings confirm the suitability of the xenograft model to investigate JMML epigenetics and, more importantly, indicate that patient-specific epigenetic profiles originate in leukemia-initiating stem cells, reinforcing a fundamental role of these alterations in JMML biology. Our group recently published a retrospective case series demonstrating unprecedented clinical efficacy of the DNA methyltransferase inhibitor 5-azacytidine (5AC) to induce partial or complete remissions in JMML before allogeneic HSCT (Cseh, Blood 2015;125:2311-3). To further investigate the drug on the preclinical level we administered 5AC to Rag2-/- gamma-c-/- mice xenografted with primary JMML cells. After a leukemia establishment phase the mice were divided into treatment or mock groups and treated with 5AC (3mg/kg body weight i.p., N=6) or saline (N=6) for 2 cycles (1 dose daily for 5 days; 9 days of recovery). This regimen was tolerated well by the animals. We found that 5AC reduced JMML infiltration in all organs analyzed, with most pronounced effects in spleen (human CD45+ fraction of all CD45+ cells, 0.24% +/- 0.04% vs 39.78% +/- 10.72%; p<0.01) and lung (0.41% +/-0.18% vs 42.88% +/-8.42%; p<0.01). The proportion of early progenitor cells (CD34+) within the human leukemia population in murine bone marrow was dramatically reduced after 5AC treatment (7.89% +/-0.74% vs 32.65% +/-3.76%; p<0.01) while the amount of granulocytes increased simultaneously (44.90% +/-1.74% vs 9.35% +/-1.95%; p<0.01). These findings suggest a loss of JMML cells induced by forced differentiation of more immature cells into mature myelomonocytic cells with reduced proliferation potential. Bisulfite pyrosequencing of the human BMP4 promoter CpG island, a locus frequently hypermethylated in JMML, showed significantly reduced DNA methylation in JMML cells retrieved from 5AC-treated mice (31.32% +/-2.66% vs 52.46% +/-1.39%; p<0.001). In summary we created an ex vivo JMML xenograft model in immunodeficient mice that reflects many important aspects of this disorder and proved its usefulness for preclinical research of DNA methyltransferase inhibition because of extraordinary stability of leukemic DNA methylation patterns. 5AC showed clear preclinical efficacy in this model, supporting its further development in clinical treatment strategies for JMML. Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 225 (03) ◽  
Author(s):  
S Fluhr ◽  
T Witte ◽  
CF Krombholz ◽  
C Plass ◽  
CM Niemeyer ◽  
...  

2019 ◽  
Vol 20 (6) ◽  
pp. 614-629 ◽  
Author(s):  
Eglantina Idrizaj ◽  
Rachele Garella ◽  
Roberta Squecco ◽  
Maria Caterina Baccari

The present review focuses on adipocytes-released peptides known to be involved in the control of gastrointestinal motility, acting both centrally and peripherally. Thus, four peptides have been taken into account: leptin, adiponectin, nesfatin-1, and apelin. The discussion of the related physiological or pathophysiological roles, based on the most recent findings, is intended to underlie the close interactions among adipose tissue, central nervous system, and gastrointestinal tract. The better understanding of this complex network, as gastrointestinal motor responses represent peripheral signals involved in the regulation of food intake through the gut-brain axis, may also furnish a cue for the development of either novel therapeutic approaches in the treatment of obesity and eating disorders or potential diagnostic tools.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3402
Author(s):  
Eun Kyung Ko ◽  
Brian C. Capell

Recent evidence suggests that the disruption of gene expression by alterations in DNA, RNA, and histone methylation may be critical contributors to the pathogenesis of keratinocyte cancers (KCs), made up of basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), which collectively outnumber all other human cancers combined. While it is clear that methylation modifiers are frequently dysregulated in KCs, the underlying molecular and mechanistic changes are only beginning to be understood. Intriguingly, it has recently emerged that there is extensive cross-talk amongst these distinct methylation processes. Here, we summarize and synthesize the latest findings in this space and highlight how these discoveries may uncover novel therapeutic approaches for these ubiquitous cancers.


2021 ◽  
Vol 11 (2) ◽  
pp. 75 ◽  
Author(s):  
Britt Delnoy ◽  
Ana I. Coelho ◽  
Maria Estela Rubio-Gozalbo

Type I (classic) galactosemia, galactose 1-phosphate uridylyltransferase (GALT)-deficiency is a hereditary disorder of galactose metabolism. The current therapeutic standard of care, a galactose-restricted diet, is effective in treating neonatal complications but is inadequate in preventing burdensome complications. The development of several animal models of classic galactosemia that (partly) mimic the biochemical and clinical phenotypes and the resolution of the crystal structure of GALT have provided important insights; however, precise pathophysiology remains to be elucidated. Novel therapeutic approaches currently being explored focus on several of the pathogenic factors that have been described, aiming to (i) restore GALT activity, (ii) influence the cascade of events and (iii) address the clinical picture. This review attempts to provide an overview on the latest advancements in therapy approaches.


Author(s):  
William A. Lambert ◽  
Joseph A. DiGiuseppe ◽  
Tatiana Lara-Ospina ◽  
Markus J. Bookland ◽  
Jonathan E. Martin ◽  
...  

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Kübra Taban ◽  
David Pauck ◽  
Mara Maue ◽  
Viktoria Marquardt ◽  
Hua Yu ◽  
...  

Abstract Medulloblastoma (MB) is the most common malignant brain tumor in children and is frequently metastatic at diagnosis. Treatment with surgery, radiation and multi-agent chemotherapy may leave survivors of these brain tumors with long-term deficits as a consequence. One of the four consensus molecular subgroups of MB is the MYC-driven group 3 MB, which is the most malignant type and has a poor prognosis under current therapy. Thus, it is important to discover more effective targeted therapeutic approaches. We conducted a high-throughput drug screening to identify novel compounds showing efficiency in group 3 MB using both clinically established inhibitors (n=196) and clinically-applicable compounds (n=464). More than 20 compounds demonstrated a significantly higher anti-tumoral effect in MYChigh (n=7) compared to MYClow (n=4) MB cell models. Among these compounds, Navitoclax and Clofarabine showed the strongest effect in inducing cell cycle arrest and apoptosis in MYChigh MB models. Furthermore, we show that Navitoclax, an orally bioavailable and blood-brain barrier passing anti-cancer drug, inhibits specifically Bcl-xL proteins. In line, we found a significant correlation between BCL-xL and MYC mRNA levels in 763 primary MB patient samples (Data source: “R2 https://hgserver1.amc.nl”). In addition, Navitoclax and Clofarabine have been tested in cells obtained from MB patient-derived-xenografts, which confirmed their specific efficacy in MYChigh versus MYClow MB. In summary, our approach has identified promising new drugs that significantly reduce cell viability in MYChigh compared to MYClow MB cell models. Our findings point to novel therapeutic vulnerabilities for MB that need to be further validated in vitro and in vivo.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii287-iii287
Author(s):  
Hiroaki Katagi ◽  
Nozomu Takata ◽  
Yuki Aoi ◽  
Yongzhan Zhang ◽  
Emily J Rendleman ◽  
...  

Abstract Diffuse intrinsic pontine glioma (DIPG) is highly aggressive brain stem tumor and needed to develop novel therapeutic agents for the treatment. The super elongation complex (SEC) is essential for transcription elongation through release of RNA polymerase II (Pol II). We found that AFF4, a scaffold protein of the SEC, is required for the growth of H3K27M-mutant DIPG cells. In addition, the small molecule SEC inhibitor, KL-1, increased promoter-proximal pausing of Pol II, and reduced transcription elongation, resulting in down-regulate cell cycle, transcription and DNA repair genes. KL-1 treatment decreased cell growth and increased apoptosis in H3K27M-mutant DIPG cells, and prolonged animal survival in our human H3K27M-mutant DIPG xenograft model. Our results demonstrate that the SEC disruption by KL-1 is a novel therapeutic strategy for H3K27M-mutant DIPG.


Sign in / Sign up

Export Citation Format

Share Document